首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
The cyclic bidirectional process of isothermal flow of a binary singlephase compressible gas mixture in a porous medium accompanied by diffusion-dispersion mass transfer is considered. On the basis of the equations of multiphase multicomponent isothermal flow a system of two nonlinear partial differential equations with nonlinear boundary conditions corresponding to a given constant gas injection or takeoff rate is obtained and investigated. A numerical algorithm for solving the boundary-value problem obtained is proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 64–71, November–December, 1991.In conclusion, the author wishes to thank V. M. Maksimov for taking a constant interest in the work and discussing the results.  相似文献   

3.
The impingement of an axisymmetric underexpanded ideal gas jet on a flat surface is investigated through numerical simulations. Different injection conditions, characterized by the nozzle pressure ratio (NPR), have been considered and for each, several standoff distances were studied. The study was conducted using the commercial finite volume general purpose code Fluent®. The numerical results are presented in terms of Mach number and static pressure to characterize the structure of the flow. Furthermore, the influence of the standoff distance upon the position and diameter of Mach disk is analysed. Some results are compared with literature data and good agreement is obtained.  相似文献   

4.
The problem of the interaction of a viscous supersonic stream in a flat nozzle with a transverse gas jet of the same composition blown through a slot in one wall of the nozzle is examined. The complete Navier-Stokes equations are used as the initial equations. The statement of the problem in the case of the absence of blowing coincides with [1]. The conditions at the blowing cut are obtained on the assumption that the flow of the blown jet up to the blowing cut is described by one-dimensional equations of ideal gasdynamics. The proposed model of the interaction is generalized to the case of flow of a multicomponent gas mixture in chemical equilibrium. The exact solutions found in [2] are used as the boundary conditions at the entrance to the section of the nozzle under consideration. The results of numerical calculations of the flows of a homogeneous nonreacting gas and of an equilibrium mixture of gases consisting of four components (H2, H2O, CO, CO2) are given for different values of the parameters of the main stream and of the blown jet. In the latter case it is assumed that the effect of thermo- and barodiffusion can be neglected.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 55–63, July–August, 1974.  相似文献   

5.
The problem of the steady axisymmetric two-phase flow of a multicomponent mixture through a porous medium with phase transitions is considered. It is shown that the system of equations for the two-phase multicomponent flow process, together with the equations of phase equilibrium, reduces to a system of two ordinary differential equations for the pressures in the gas and liquid phases. A family of numerical solutions is found under certain assumptions concerning the pressure dependence of the molar fraction of the liquid phase.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 92–97, November–December, 1994.  相似文献   

6.
Detonation combustion of a hydrogen-air mixture entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered under atmospheric conditions at altitudes up to 24 km. The investigation is carried out on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. The limiting altitude ensuring detonation combustion in a Laval nozzle of given geometry is numerically established for freestream Mach numbers 6 and 7. The possibility of the laser initiation of detonation in a supersonic flow of a stoichiometric, preliminarily heated hydrogen-air mixture is experimentally studied. The investigation is carried out in a shock tube under conditions simulating a supersonic flow in the nozzle throat region.  相似文献   

7.
In the present paper a numerical calculation is made of the vibrational relaxation of a binary mixture of molecular nitrogen and carbon dioxide gas. The calculation is performed for the entire range of variation of the concentrations of the components and over a wide range of mixture temperatures and pressures for various geometries of the supersonic part of the nozzle (throat dimensions, degree of expansion). It is shown that population inversion of the CO2 molecules exists within a certain range of variation of the parameters of the mixture and the nozzle. The population inversion of the vibrational levels and the gain of the gaseous mixture are calculated as functions of these parameters and of distance measured from the critical cross section of the nozzle. The energy characteristics of the two-component gasdynamic laser are optimized.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 23–30, May–June, 1974.  相似文献   

8.
We shall describe a method for calculating the flow of a complex gas mixture not in chemical equilibrium, based on selection of the time scale for the problem solution and sectioning of the reaction velocities in the near-equilibrium mode of their flow. The method permits derivation of calculation programs possessing wide applicability for systems with a large number of reactions. The application of the method is illustrated through calculations on a system, the components of which contain H,O,C,N, and Cl elements. Calculation of the parameters of the flow of a multicomponent gas through a nozzle under given conditions requires consideration of the kinetics of the chemical reactions which occur in the system. Mathematically, such a problem leads to the simultaneous numerical solution of the gas-dynamics equations for the flow parameters and the chemical kinetic equations for the concentration of the individual components. Several difficulties exist, the most basic of which are calculation of the region of near equilibrium flow and the transonic flow region with transition across the sonic point, and calculation of a large number of chemical reaction velocities of greatly differing magnitudes, in the case of a complex gas mixture. In order to obtain a stable solution in the near-equilibrium flow region, several methods have recently been proposed, which permit consolidation of the integration step. We note the use of a local linearization of the chemical kinetic equation system, as employed in [1]. This method in practice is useful for relatively slow change in component concentrations. In [2] at each integration step the kinetic equations are transformed into a system of L algebraic equations (where L is the number of reactions), and with an increase in the number of reactions (L20) the laboriousness of such a calculation increases sharply. The implicit differential schemes of integration presented in [3, 4] appear more acceptable, but in fact they too have been tested only for systems with a relatively small number of reactions. The difficulty of calculating the transonic flow region, as is well known, is connected with selection of the unique value of mass flow G, at which the transition to supersonic flow is realized. This may be avoided by defining over the length of the nozzle one of the gas-dynamic functions (for example, pressure distribution [4]), which are not highly sensitive to chemical nonequilibrium, the values being taken from supplementary calculations of nonequilibrium flow through the nozzle. Several investigators have limited their examination to the supersonic flow region (see, for example, [5]), but with this method the results may lack sufficient accuracy, since in some cases (for high gradients of the gas-dynamic magnitudes) the transonic region produces a comparable contribution to the general effect of nonequilibrium. We will describe below a method with which a practically universal system of calculating the nonequilibrium flow of a complex gas mixture through a nozzle can be realized. In practice, up to 60 of the most significant reactions may be considered, out of a practically unlimited number initially present. The method is based on sectioning of the reaction velocities in the near-equilibrium mode. This permits attainment of a stable solution in the near-equilibrium flow region with acceptable machine-time expenditures. The method describes the transition through the sonic point, since the systematic error introduced by its use (within the limits of calculation accuracy) improves the convergence of the iteration process used in finding G. In applying the method it is useful to select the more important of those reactions theoretically possible, and also to conduct calculations for equilibrium flow conditions of the individual chemical reactions; the latter permits evaluation of the maximum possible contribution of reactions for which the velocity constants are unknown.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 159–163, September–October, 1971.The authors are grateful to A. I. Vol'pert and L. N. Stesik for their interest in and evaluation of the study.  相似文献   

9.
A study is made of the isothermal flow of multicomponent mixtures in a porous medium, accompanied by phase transitions, interphase mass exchange, and change in the physicochemical properties of the phases [1–3], It is assumed that at each point of the flow region, phase equilibrium is established instantaneously and the flow velocities of the separate phases conform to Darcy's law. Approximate solutions of problems of displacing oil by high-pressure gas were obtained in [1]. By generalizing the theory developed in [4], a study is made in [5] of the structure of the exact solutions of the problems of the flow of three-component systems which describe the displacement of oil by different reactants (gases, solvents, micellar solutions). The numerical solutions of the problems of multicomponent system flow are considered in [2, 3, 6, 7]. This paper presents a numerical method which is distinguished from the well-known ones [2, 3, 6, 7] by the following characteristics. The flow equations are approximated by a completely conservative finite-difference scheme of the implicit pressure-explicit saturation type, the calculation being carried out using Newton's method of iteraction with spect to both the pressure and the composition of the mixture. The minimum derivative principle [8] is used in the approximation of the divergence terms of the equations. The phase equilibrium is calculated using the equation of state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 101–110, July–August, 1985.  相似文献   

10.
The diffusion force and rate are calculated for the diffusiophoresis of a spherical particle in a binary gas mixture by solving the gas–kinetic equations. Two schemes of diffusiophoresis are considered: constant–pressure diffusion and diffusion of one mixture component through the other fixed component. The problem is solved by the integral–momentum method at arbitrary Knudsen numbers. Diffuse scattering of the gas molecules on the particle surface is assumed. The Lorentzian and Rayleigh models of a binary gas mixture are considered. The dependences of the force and rate of diffusiophoresis on the Knudsen number and the other determining parameters are analyzed. The results obtained are compared with well–known experimental data.  相似文献   

11.
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained.  相似文献   

12.
The phenomenological theory of relaxation gas dynamics equations is outlined for laminar flows of multicomponent reacting gases in an approximation analogous to the Navier-Stokes approximation. A system of general equations of relaxation gas dynamics including the level kinetics equations for all excited internal degrees of freedom is formulated on the basis of notions of continuum mechanics. A procedure of going over to particular cases characterized by certain relations between the relaxation times is described and examples of the corresponding closed systems of gas dynamics equations including systems containing the balance equations of the level or mode approximations for the vibrational energy levels of molecules of a gas mixture are given. A method of constructing a database of the models of the rate constants of physicochemical processes as coefficients in the source terms of the balance equations is considered.  相似文献   

13.
A method is described for the calculation of plane and axisymmetric flows of gas mixtures with vibrational energy relaxation in the subsonic, transonic, and supersonic regions of the nozzle. The method is based on numerical solution of the inverse problem of nozzle theory. Results are given for the flow of a C02-N2-H2O-He mixture with vibrational relaxation and compared with the results of one-dimensional calculations. It is found that vibrational-energy relaxation has a significant effect on the gasdynamic parameters of flow in nozzles with large, relative expansion and therefore in choosing a nozzle shape, especially in the supersonic region, it is necessary to calculate the nonequilibrium flow. It is shown that the geometry of the transonic and supersonic regions of the nozzle has a considerable effect on the distribution of the inverse population of the level and the amplification factor.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 125–131, September–October, 1977.  相似文献   

14.
Numerical simulation of gas-solid flow in a two-dimensional fluidized bed with an inclined jet was performed. The numerical model is based on the two-fluid model of gas and solids phase in which the solids constitutive equations are based on the kinetic theory of granular flow. The improved ICE algorithm, which can be used for both low and high-velocity fluid flow, were used to solve the model equations. The mechanism of jet formation was analyzed using both numerical simulations and experiments. The emergence and movement of gas bubbles were captured numerically and experimentally. The influences of jet velocity, nozzle diameter, nozzle inclination and jet position on jet penetration length were obtained. A semi-empirical expression was derived and the parameters were correlated from experimental data. The correlation equation, which can be easily used to obtain the inclined jet penetration length, was compared with our experimental data and published correlation equations.  相似文献   

15.
The numerical solutions of a system of quasilinear equations in partial derivatives, describing the motion of a nonisothermal multicomponent sorbable gas mixture (or mixture of liquids) through a porous saturated medium consisting of porous grains and incapable of undergoing deformation, are analyzed; the conditions for the convergence of the iteration process used in solving the difference scheme and for the stability of the numerical solutions are obtained; the necessary and sufficient conditions for the existence of solutions of the traveling-wave type, permitted by the system of equations of motion, are also analyzed.  相似文献   

16.
The dependence of the radiated power on the characteristics of optical cavities in the case of flow systems has been investigated in a number of papers [1–3], in which it is assumed that population inversion of the laser levels is obtained until entry into the cavity. The operation of a cavity is analyzed in [1] in the geometric-optical approximation with allowance for vibrational relaxation in the gas flow. A simplified system of relaxation equations is solved under steady-state lasing conditions and an expression derived for the laser output power on the assumption of constant temperature, density, and flow speed. The vibrational relaxation processes in the cavity itself are ignored in [2, 3]. It is shown in those studies that the solution has a singularity at the cavity input within the context of the model used. In the present article the performance characteristics of a CO2-N2-He gas-dynamic laser with a plane cavity are calculated. A set of equations describing the processes in the cavity is analyzed and solved numerically. Population inversion of the CO2 laser levels is created by pre-expansion of the given mixture through a flat hyperbolic nozzle. The dependence of the output power on the reflectivities of the mirrors, the cavity length, the pressure, and the composition of the active gas medium is determined.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi FiziM, No. 5, pp. 33–40, September–October, 1972.  相似文献   

17.
A number of theoretical papers have been devoted to an investigation of the relaxation kinetics of the population of a system of rotational levels of molecules in a stream of gas freely expanding from a sonic nozzle [1–3]. The complexity of the task of constructing models of relaxation and of collisions consistent in accuracy, however, as well as the difficulties in solving the resulting system of kinetic and gas-dynamic equations, lead to the necessity of using substantial approximations. Some disagreement between the experimental data and calculated results [1, 2] requires an evaluation of the accuracy of the various approximations used and further refinement of the theoretical models. In contrast to [1], in order to bring out the possible mutual influence of nonequilibrium energy exchange between the degrees of freedom of nitrogen molecules and the variation of the gas-dynamic parameters, the calculation presented below is based on a numerical solution of a self-consistent system of kinetic and gas-dynamic equations for the populations of rotational states and the temperature, density, and velocity of gas in the stream. Collisional probabilities of rotational transitions, calculated with allowance for the long-range part of the potential of the interaction between molecules [4], are used for this.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 9–16, May–June, 1986.  相似文献   

18.
19.
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.  相似文献   

20.
The paper presents results of a numerical simulation of a supersonic two-dimensional (2D) viscous flow containing CO2 molecules near a spacecraft entering the Mars atmosphere. The gas–dynamic equations in the shock layer are coupled to the equations of non-equilibrium vibrational and chemical kinetics in the five-component mixture CO2/CO/O2/C/O. Transport and relaxation processes in the flow are studied on the basis of the rigorous kinetic theory methods; the developed transport algorithms are incorporated in the numerical scheme. The influence of the vibrational excitation of CO2 and chemical reactions on the gas flow parameters and heat transfer is analyzed. The obtained results are compared with those found using two simplified models based on the two-temperature and one-temperature vibrational distributions in CO2. The accuracy of the simplified models and the limits of their validity within the shock layer are evaluated. The effect of bulk viscosity in a flow near a re-entry body is discussed. The role of different diffusion processes, chemical reactions, and surface catalytic properties in a flow of the considered mixture in the shock layer is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号