首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In dilatant fluids the shear perturbation propagation rate is finite, in contrast to Newtonian and pseudoplastic fluids in which it is infinite [1]. Therefore, in certain dilatant fluid flows, frontal surfaces separating regions with zero and nonzero shear perturbations may be formed. Since, in a sense, the boundary layer is a “time scan” of the nonstationary shear perturbation propagation process, in dilatant fluids the boundary layer should definitely be spatially localized. This was first mentioned in [2] where, however, it was mistakenly asserted that boundary layer spatial localization does not take place in all dilatant fluids and is absent in so-called “hardening” dilatant fluids. In [3], the solutions of the laminar boundary-layer equations for speudoplastic and “hardening” dilatant fluids were investigated qualitatively. The formation of frontal surfaces in dilatant fluid flows is usually mathematically related with the existence of singular solutions of the corresponding differential equations [4]. However, since the analysis performed in [3] was inaccurate, in that study singular solutions were not found and it was incorrectly concluded that in “hardening” dilatant fluids there is no spatial boundary layer localization. The investigation performed in [5] showed that in fact in “hardening” dilatant fluids boundary layers are spatially localized, since there exist singular solutions of the corresponding differential equations. Subsequently, this result was reproduced in [6], where an attempt was also made to carry out a qualitative investigation of the solutions of the laminar boundary-layer equations for other types of dilatant fluids. The author did not find singular solutions in this case and mistakenly concluded that in these fluids there is no spatial boundary layer localization. This misunderstanding was due to the fact that in [6] it was not understood that in dilatant fluid flows the formation of frontal surfaces can be mathematically described not only in relation to the existence of singular solutions.  相似文献   

2.
The problem of the onset of electrohydrodynamic instability in a horizontal layer of Oldroydian viscoelastic dielectric liquid through Brinkman porous medium under the simultaneous action of a certical ac electric field and a vertical temperature gradient is analyzed. Applying linear stability theory, we derive an equation of eight order. Under somewhat suitable boundary conditions, this equation can be solved exactly to yield the required eigenvalue relationship from which various critical values are determined in detail. Both the cases of stationary and oscillatory instabilities are discussed if the liquid layer is heated from below or above. The effects of the porosity of porous medium, the medium permeability, the Prandtl number, the ratio of retardation time to relaxation time, the elastic number, in the presence or absence of Rayleigh number are shown graphically for both cases. Some of the known results are derived as special cases. The electrical force has been shown to be the sole agency causing instability of the considered system since it is much more important than the buoyancy force even if the medium is porous.  相似文献   

3.
The problem of natural convective heat transfer for a non-Newtonian fluid from an impermeable vertical plate embedded in a fluid-saturated porous medium has been analyzed. Non-Darcian, radiative and thermal dispersion effects have been considered in the present analysis. The governing boundary layer equations and boundary conditions are cast into a dimensionless form and simplified by using a similarity transformation. The resulting system of equations is solved by using a double shooting Runge–Kutta method. The effect of viscosity index n, the conduction–radiation parameter R, the non-Darcy parameter Gr*, the thermal dispersion parameter Ds and the suction/injection parameter fw on the fluid velocities, temperatures and the local Nusselt number are discussed.  相似文献   

4.
A boundary layer analysis has been presented for the interaction of mixed convection with thermal radiation in laminar boundary flow from a vertical wedge in a porous medium saturated with a power-law type non-Newtonian fluid. The fluid considered is a gray medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented.  相似文献   

5.
The paper deals with a steady coupled dissipative layer, called Marangoni mixed convection boundary layer, which can be formed along the interface of two immiscible fluids, in surface driven flows. The mixed convection boundary layer is generated when besides the Marangoni effects there are also buoyancy effects due to gravity and external pressure gradient effects. We shall use a model proposed by Golia and Viviani (L’ Aerotecnica missili e Spazio 64 (1985) 29–35, Meccanica 21 (1986) 200–204) wherein the Marangoni coupling condition has been included into the boundary conditions at the interface. The similarity equations are first determined, and the pertinent equations are solved numerically for some values of the governing parameters and the features of the flow and temperature fields as well as the interface velocity and heat transfer at the interface are analysed and discussed.  相似文献   

6.
The flow control effects of nanosecond plasma actuation on the boundary layer flow of a typical compressor controlled diffusion airfoil are investigated using large eddy simulation method. Three types of plasma actuation are designed to control the boundary layer flow, and two mechanisms of compressor airfoil boundary layer flow control using nanosecond plasma actuation have been found. The plasma actuations located within the laminar boundary layer flow can induce a small vortex structure through influencing on the density and pressure of the flow field. As the small vortex structure moves downstream along the blade surface with the main flow, it can suppress the turbulent flow mixing and reduce the total pressure loss. The flow control effect of the small vortex structure is summarized as wall jet effect. Differently, the plasma actuation located within the turbulent boundary layer flow can act on the shear layer flow and induce a large vortex structure. While moving downstream, this large vortex structure can suppress the turbulent flow mixing too.  相似文献   

7.
A similarity analysis of three-dimensional boundary layer equations of a class of non-Newtonian fluid in which the stress, an arbitrary function of rates of strain, is studied. It is shown that under any group of transformation, for an arbitrary stress function, not all non-Newtonian fluids possess a similarity solution for the flow past a wedge inclined at arbitrary angle except Ostwald-de-Waele power-law fluid. Further it is observed, for non-Newtonian fluids of any model only 90° of wedge flow leads to similarity solutions. Our results contain a correction to some flaws in Pakdemirli׳s [14] (1994) paper on similarity analysis of boundary layer equations of a class of non-Newtonian fluids.  相似文献   

8.
In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data.  相似文献   

9.
附面层网格质量是确保计算流体力学粘性计算精度的关键技术环节.本文针对复杂外形提出了全局一致的高质量附面层网格构造算法,该方法基于针对特征的表面网格区域分解技术,利用表面网格分片后的边界线及其法向量构造最终附面层网格的轮廓框架线,并通过径向基函数及线性插值算法生成完整的附面层网格.通过典型算例分析可以看出,该方法生成的非结构附面层网格精度和全局一致性较高,且能够有效避免复杂外形附面层网格局部及全局交叉现象.  相似文献   

10.
A comprehensive study of magneto hydrodynamics two‐dimensional stagnation flow with heat transfer characteristics towards a heated shrinking sheet immersed in an electrically conducting incompressible micropolar fluid in the presence of a transverse magnetic field is analyzed numerically. The governing continuity, momentum, angular momentum and heat equations together with the associated boundary conditions are first reduced to a set of self similar nonlinear ordinary differential equations using a similarity transformation and are then solved by a method based on finite difference discretization. Some important features of the flow and heat transfer in terms of normal and streamwise velocities, microrotation and temperature distributions for different values of the governing parameters are analyzed, discussed and presented through tables and graphs. The results indicate that the reverse flow caused due to shrinking of the sheet can be stopped by applying a strong magnetic field. The magnetic field enhances the shear stresses and decreases the thermal boundary layer thickness. The heat loss per unit area from the sheet decreases with an increase in the shrinking parameter. Micropolar fluids exhibit reduction in shear stresses and heat transfer rate as compared with Newtonian fluids, which may be beneficial in the flow and thermal control of polymeric processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.  相似文献   

12.
The calorimetric method for determining the heat flux at a permeable (or sublimating) surface requires the solution of several specific heat-transfer problems, since the calorimeter, bringing about discontinuities in the boundary conditions at the wall (the cessation of blowing, a jump in the temperature of the wall and of its catalytic properties, etc.), introduces perturbations into the boundary layer and measures a heat flux differing from the flux in the absence of a calorimeter. Within the framework of the boundary layer, schematization of such problems is usually based on the isolation of an internal boundary layer (sublayer), which is the region of the effect of the new phenomena at the wall, and develops in the main boundary layer [1–5]. To take account of the effect of the inhomogeneity of the flow in the main boundary layer on heat transfer through the sublayer, here the method of mean-mass values is used, which, as has been demonstrated using various examples in [4] and in the present work, has a good degree of accuracy (even in the neighborhood of the breakaway point) and is suitable for the profiles of an inhomogeneous flow of rather general form. Based on this, for a laminar boundary layer finite formulas are obtained below for the heat flux to a calorimeter of relatively small size at a permeable wall, which can be used for the analysis of experiments.  相似文献   

13.
The present paper is concerned with the study of radiation effects on the combined (forced-free) convection flow of an optically dense viscous incompressible fluid over a vertical surface embedded in a fluid saturated porous medium of variable porosity with heat generation or absorption. The effects of radiation heat transfer from a porous wall on convection flow are very important in high temperature processes. The inclusion of radiation effects in the energy equation leads to a highly non-linear partial differential equations which are transformed to a system of ordinary differential equations using non-similarity transformation. These equations are then solved numerically using implicit finite-difference method subject to appropriate boundary and matching conditions. A parametric study of the physical parameters such as the particle diameter-based Reynolds number, the flow based Reynolds number, the Grashof number, the heat generation or absorption co-efficient and radiation parameter is conducted on temperature distribution. The effects of radiation and other physical parameters on the local skin friction and on local Nusselt number are shown graphically. It is interesting to observe that the momentum and thermal boundary layer thickness increases with the radiation and decrease with increase in the Prandtl number.  相似文献   

14.
Dulal Pal 《Meccanica》2009,44(2):145-158
In this paper an analysis has been made to study heat and mass transfer in two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in the presence of buoyancy force and thermal radiation. The similarity solution is used to transform the problem under consideration into a boundary value problem of nonlinear coupled ordinary differential equations containing Prandtl number, Schmidt number and Sherwood number which are solved numerically with appropriate boundary conditions for various values of the dimensionless parameters. Comparison of the present numerical results are found to be in excellent with the earlier published results under limiting cases. The effects of various physical parameters on the boundary layer velocity, temperature and concentration profiles are discussed in detail for both the cases of assisting and opposing flows. The computed values of the skin friction coefficient, local Nusselt number and Sherwood number are discussed for various values of physical parameters. The tabulated results show that the effect of radiation is to increase skin friction coefficient, local Nusselt number and Sherwood number.  相似文献   

15.
A new type of vibrational lift force [1] acting on a spherical body oscillating in a viscous fluid near a rigid boundary is experimentally investigated. The interaction between the body and the cavity boundary creates a repulsion force which is capable of holding a heavy body in the gravity field at a certain distance from the floor and a light body at a certain distance from the ceiling. The repulsion force appears at a distance comparable with the Stokesian boundary layer thickness and increases as the surface is approached. Outside the viscous interaction range, the repulsion force is replaced by an attraction force which decays with distance. Dimensionless parameters governing the vibrational interaction are found and threshold curves, corresponding to the transition of bodies of different densities to the “suspended” state, are plotted as functions of a dimensionless frequency. The dependence of the repulsion and attraction forces on the distance between the body and the wall is studied.  相似文献   

16.
A boundary layer analysis has been presented for the interaction of mixed convection with thermal radiation in laminar boundary flow from a vertical wedge in a porous medium saturated with a power-law type non-Newtonian incorporating the variation of permeability and thermal conductivity. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. The combined convection non-similar parameter we note that =0 and 1 correspond to pure free and forced convection cases. The Rosseland approximation is used to describe the radiative heat flux in energy equation. Velocity and temperature profiles as well as the local Nusselt number are presented.  相似文献   

17.
For power-law fluids we propose a Lie-group shooting method to tackle the boundary-layer problems under a suction/injection as well as a reverse flow boundary conditions. The Crocco transformation is employed to reduce the third-order equation to a second-order ordinary differential equation, and then through a symmetric extension to a boundary value problem with constant boundary conditions, which can be solved numerically by the Lie-group shooting method. However, the resulting equation is singular, which might be difficult to solve, and we propose a technique to overcome the initial impulse caused by the singularity using a very small time-step integration at the first few time steps. Because we can express the missing initial condition through a closed-form formula in terms of the weighting factor r∈(0,1), the Lie-group shooting method is very effective for searching the multiple-solutions of a reverse flow boundary condition.  相似文献   

18.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a viscoelastic conducting fluid of short memory (obeying Walters’ Bʹ model), a boundary layer is formed when the stretching velocity of the surface is less than the inviscid free-stream velocity and velocity at a point increases with increase in the Hartmann number. On the other hand an inverted boundary layer is formed when the surface stretching velocity exceeds the velocity of the free stream and the velocity decreases with increase in the Hartmann number. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when the surface stretching velocity is equal to the velocity of the free stream. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. It is found that in the absence of viscous and Ohmic dissipation and strain energy in the flow, temperature at a point decreases with increase in the Hartmann number.  相似文献   

19.
The effects of plasma actuation in a flat plate boundary layer with zero pressure gradient have been simulated. Based on these simulations, non-dimensional parameters and a combined wall jet/boundary layer model of the velocity profile have been developed. A parametric study using local linear stability analysis has been performed to examine the hydrodynamic stability of the velocity profiles created through this model. Convective and absolute instability mechanisms are found to be important, some of which have not been previously documented. Neutral stability curves have been computed for the different instabilities, and when put in terms of the shape factor, they still compare favorably with reported canonical results, indicating that the critical Reynolds number is primarily a function of the shape factor. These results are also discussed in relation to existing experimental results as well as with respect to their implementation.  相似文献   

20.
成璐  姜楠 《实验力学》2015,30(1):51-58
运用高时间分辨率粒子图像测速(Time-resolved PIV简称TRPIV),测量得到平板湍流边界层流向/法向平面内瞬时速度矢量空间分布的时间序列;采用空间局部平均速度结构函数的概念,识别和提取湍流边界层中大尺度发卡涡包结构的空间特征。发现在湍流边界层中不同法向位置多个正负发卡涡包结构同时交替存在。这些分布在不同法向高度的发卡涡包结构之间通过倾斜的涡量剪切层相联系,构成了湍流边界层中内、外区紧密相连、相互作用的一种稳态的分布方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号