首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高山  施瑶  潘光  权晓波  鲁杰文 《力学学报》2022,54(9):2435-2445
在水下连续发射过程中前一发航行体尾流会对后一发航行体运动姿态稳定性产生流动干扰现象. 因此, 研究尾流中涡旋结构演变机理对解决多弹体水下连续发射流动干扰难题具有重要的意义. 本文采用改进型分离涡模型与能量方程, VOF多相流模型与重叠网格技术相结合方法, 对航行体水下发射尾流演变过程开展精细化模拟研究, 其中模拟结果和实验吻合度较好, 验证了本文数值方法的有效性. 以航行体尾流区域为重点研究对象, 分析了尾流区瞬态流场分布, 讨论了横流强度和雷诺数对尾涡结构演变以及脉动压力分布特性的影响. 结果表明: 由于尾流区高速流体核心区与低速自由流相互作用导致Kelvin-Helmholtz不稳定现象出现, 可以清晰地发现涡旋结构在剪切力的作用下发生脱落. 在横流条件下, 航行体尾端脱落的涡环与涡腿形成发卡涡, 而多个发卡涡沿轴向间隔排列组成发卡涡包存在于尾流中. 随着横流强度增大, 形成多级发卡涡包结构, 而导致脉动压力二次峰值均出现的主要原因是尾流涡旋流场演变引起的. 随着雷诺数的增大, 尾流中由圆柱形涡和U型涡组成的二次涡结构逐渐明显, 不稳定性加强.   相似文献   

2.
利用数值方法对长宽比为1/3, 1和3的棱柱绕流在雷诺数为100的非稳态流动特性进行了分析和研究。采用有限体积法对棱柱绕流的二维流动N-S方程进行离散求解,分析和研究了非稳态的棱柱绕流流场,升力系数,阻力系数和涡动特性,数值模拟的结果与相关文献的数据比较吻合。通过上述研究能够为了解棱柱绕流的非稳态流动特性提供有力的帮助。而对棱柱三维流动的模拟分析和对雷诺数的变化对棱柱流动特性的影响进行研究,将为掌握棱柱绕流的工程特性打下基础。  相似文献   

3.
近距离下射流冲击平板PIV实验研究   总被引:2,自引:1,他引:1  
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.   相似文献   

4.
横向强迫振荡柱体尾流控制是柱体涡激振动控制的基础,在海洋、土木等工程中具有重要意义. 横向强迫振荡柱体尾流中存在一种锁频旋涡脱落模式,即在一个振荡周期内柱体上、下侧各脱落旋转方向相反的一对涡,称为2P模式. 本文将相对宽度b/D=0.32的窄条控制件置于横向强迫振荡柱体下游,对振幅比A/D=1.25, 无量纲振频f_e D/V_∞=0.22,雷诺数Re=1 200的2P模式旋涡脱落进行干扰,并通过改变控制件位置,研究旋涡的变化规律. 采用二维大涡模拟和实验验证方法进行研究,在控制件位置范围0.8≤X/D≤3.2, 0.4≤Y/D≤3.2内,得到了2P, 2S, P+S和另外6种新发现的旋涡脱落模式,并对各模式旋涡的形成过程作了详细描述. 在控制件位置平面上给出了各旋涡模式的存在区域,画出了旋涡脱落强度的等值线图,并发现在一个相当大的区域内,旋涡脱落强 度可减小一半以上,尾流变窄. 发现柱体大幅振荡引起的横向剪切流在旋涡生成中起关键作用. 探讨了控制件对横向剪切流的影响,分析了控制件在每种旋涡模式形成中的作用机制.   相似文献   

5.
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.  相似文献   

6.
横向强迫振荡柱体尾流控制是柱体涡激振动控制的基础,在海洋、土木等工程中具有重要意义.横向强迫振荡柱体尾流中存在一种锁频旋涡脱落模式,即在一个振荡周期内柱体上、下侧各脱落旋转方向相反的一对涡,称为2P模式.本文将相对宽度b/D=0.32的窄条控制件置于横向强迫振荡柱体下游,对振幅比A/D=1.25,无量纲振频f_eD/V_∞=0.22,雷诺数Re=1 200的2P模式旋涡脱落进行干扰,并通过改变控制件位置,研究旋涡的变化规律.采用二维大涡模拟和实验验证方法进行研究,在控制件位置范围0.8 X/D 3.2,0.4 Y/D 3.2内,得到了2P,2S,P+S和另外6种新发现的旋涡脱落模式,并对各模式旋涡的形成过程作了详细描述.在控制件位置平面上给出了各旋涡模式的存在区域,画出了旋涡脱落强度的等值线图,并发现在一个相当大的区域内,旋涡脱落强度可减小一半以上,尾流变窄.发现柱体大幅振荡引起的横向剪切流在旋涡生成中起关键作用.探讨了控制件对横向剪切流的影响,分析了控制件在每种旋涡模式形成中的作用机制.  相似文献   

7.
应用小干扰柱体控制角区马蹄涡结构的实验研究   总被引:1,自引:0,他引:1  
本文提出一种简单的抑制和控制角区马蹄涡的被动控制方法.即在角区平板上游放置一个远小于主柱体的小干扰柱体,用其产生的弱马蹄涡来抑制和控制角区的马蹄涡结构.目的是使角区原来的马蹄涡结构由强变为弱、由大变为小、由多变为少、由非定常变为定常,以获得减小冲刷、抑制湍流、降低噪声、避免振动的工程效果.作者在风洞中采用烟线法和激光片光流动显示的方法开展研究,实验表明,在平板上游适当位置放置小干扰柱体的确可以有效抑制和控制角区马蹄涡结构.实验发现,当小干扰柱体放置在原角区马蹄涡生成区时,其抑制和控制效果最佳;当小干扰柱体放置在上游区或下游区时,控制效果不好.本文讨论了小干扰柱体控制角区马蹄涡的机理.此外,实验还研究了小干扰柱体相对尺度和截面形状对角区马蹄涡结构抑制和控制的影响.  相似文献   

8.
邵传平  王建明 《力学学报》2006,38(2):153-161
引入一个窄条作为控制件,在Re=3.0×10 3~2.0×10 4范围内对圆柱尾流进行控制实验。窄条长度与柱体长度相同,厚 度为柱体直径的 0.015~0.025倍,宽度为柱体直径的0.18倍. 窄条的两个长边 与柱中心轴平行, 而且三者共面. 控制参数为窄条位置, 可由间距(窄条到柱轴)比λ/(0.5D)和风向角β (窄 条面与来流的夹角)确定. 采用流动显示和热线测量方法,对控制和未控制尾流的流动状态, 平均速度分布和脉动速度情况,以及作用于柱体和控制件的总阻力进行了研究和比较. 研究结果证明, 当窄条位于柱体尾流中一定区域内时, 可有效抑制柱体两侧的旋涡脱落.有效控制后的尾流湍流度也相应减小. 在不同Re数下,找出了有效抑制旋涡脱落的窄条位置区域, 并用动量积分估计了作用于柱体和窄条上的总阻力与光圆柱阻力的比值及其随风向角的变 化. 对λ/(0.5D)=2.9情况,得到了减阻的风向角区域(β=0°~40°与180°附近)以及最大减阻率32%.以上事实表明,在近尾流局部区域施加小的干扰,可改变较高Re数圆柱尾流的整体性质.  相似文献   

9.
横向振荡圆柱绕流的格子Boltzmann方法模拟   总被引:1,自引:0,他引:1  
龚帅  郭照立 《力学学报》2011,43(5):809-818
基于格子Boltzmann方法(LBM)对不可压横向振荡圆柱绕流问题进行了数值研究. 与传统的求解宏观的N-S方程的数值方法不同, LBM求解此类问题不需要采用动网格, 而且不需要对网格进行特殊处理, 从而节约了计算成本. 结果显示, 当振荡频率增加到相应的静止圆柱绕流的自然涡脱落频率附近时, 圆柱后最新形成的集中涡距离柱体越来越近, 直到达到一个极限位置. 随后, 集中涡突然转向圆柱体另一侧脱落. 当振荡频率接近于静止圆柱的自然涡脱落频率时, 发生频率同步的现象. 随着振荡频率远离自然涡脱落频率, 同步现象消失. 在几种次谐振荡和超谐振荡下, 尾流区的涡脱落频率仍为相应的静止圆柱绕流的自然涡脱落频率.   相似文献   

10.
顾志福 《力学学报》1993,25(2):201-206
通过风洞实验研究了二种典型尺寸的二维Y型柱体在不同风向角下的绕流特性及风荷载。实验结果表明:当风向顺Y型柱体某一肢时主要是来流脉动引起柱体较弱横向振动;当风向顺Y型柱体两肢分角线时则由涡脱落而引起柱体强烈的横向振动。来流湍流度的增加使脉动升力和阻力都大幅度增加,然而却使涡脱落引起的振动相对减弱。  相似文献   

11.
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at \(Re=100\), considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as \(\Omega \)-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.  相似文献   

12.
The wake dynamics of an airfoil with a blunt and divergent trailing edge is investigated experimentally at relatively high Reynolds. The near wake topology is examined versus different levels of free stream turbulence FST and angles of attack, while the downstream wake evolution is characterized at various levels of FST. The FST is found to have a significant effect on the shapes of turbulence profiles and on the downstream location where the flow reaches its quasi-asymptotic behavior. Streamwise vortices (ribs) corresponding to spanwise variations of turbulence quantities are identified in the near wake region. Simultaneous multi-point hot-wire measurements indicate that their spatial arrangement is similar to Williamson’s (Ann Rev Fluid Mech 29:477–539, 1996) mode B laminar wake flow topology. The results suggest that the statistical spanwise distribution of ribs is independent of FST effects and angle of attack as long as the vortex shedding Strouhal number remains approximately similar.  相似文献   

13.
This paper reports an experimental study of turbulent momentum and heat transport in the wake of a wall-mounted finite-length square cylinder, with its length-to-width ratio L/d = 3–7. The cylinder was slightly heated so that heat produced could be considered as a passive scalar. A moveable three-wire probe (a combination of an X-wire and a cold wire) was used to measure velocity and temperature fluctuations at a Reynolds number of 7,300 based on d and the free-stream velocity. Measurements were performed at 10 and 20d downstream of the cylinder at various spanwise locations. Results indicate that L/d has a pronounced effect on Reynolds stresses, temperature variance and heat fluxes. The downwash flow from the free end of the cylinder acts to suppress spanwise vortices and, along with the upwash flow from the cylinder base, makes the finite-length cylinder wake highly three-dimensional. Reynolds stresses, especially the lateral normal stress, are significantly reduced as a result of suppressed spanwise vortices at a small L/d. The downwash flow acts to separate the two rows of spanwise vortices further apart from the wake centerline, resulting in a twin-peak distribution in temperature variance. While the downwash flow entrains high-speed fluid into the wake, responsible for a small deficit in the time-averaged streamwise velocity near the free end, it does not alter appreciably the distribution of time-averaged temperature. It has been found that the downwash flow gives rise to a counter-gradient transport of momentum about the central region of the wake near the free end of the cylinder, though such a counter-gradient transport does not occur for heat transport.  相似文献   

14.
In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an \(\Omega \)-type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.  相似文献   

15.
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of \(L/D=6\) are analyzed at a free-stream Mach number of \(M_\infty =0.6\) and depth-based Reynolds number of \(Re_D=502\). In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of \(\beta =0\). To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of \(W/D=1\) and 2. We find that the 2D wake mode is not present in the 3D cavity flow with \(W/D=2\), in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of \(\lambda /D=0.5{-}2.0\) to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.  相似文献   

16.
Two dimensional time accurate PIV measurements of the flow between pressure and suction side at different spanwise positions of a rotating channel are presented. The Reynolds and Rotation numbers are representative for the flow in radial impellers of micro gas turbines. Superposition of the 2D results at the different spanwise positions provides a quasi-3D view of the flow and illustrates the impact of Coriolis forces on the 3D flow structure. It is shown that the inlet flow is little affected by rotation. An increasing/decreasing boundary layer thickness is reported on the suction/pressure side wall halfway between the channel inlet and outlet. The turbulence intensity moves away from the suction side wall and remains close to the pressure side wall. The instantaneous measurements at mid-height of the rotating channel reveal the presence of hairpin vortices in the pressure side boundary layer and symmetric vortices near the suction side. Hairpin vortices occur in rotation in the pressure and in the suction side, for the measurement plane close to the channel bottom wall.  相似文献   

17.
Different flow models have been proposed for the flow around surface-mounted finite-height square prisms, but there is still a lack of consensus about the origin and connection of the streamwise tip vortices with the other elements of the wake. This numerical study was performed to address this gap, in addition to clarifying the relationship of the near-wake structures with the far wake and the near-wall flow, which is associated with the fluid forces. A large-eddy simulation approach was adopted to solve the flow around a surface-mounted finite-height square prism with an aspect ratio of AR = 3 and a Reynolds number Re = 500. The mean drag and normal forces and the bending moment for the prism were quantitatively compared in terms of skin-friction and pressure contributions, and related to the near-wall flow. Both three-dimensional visualizations and planar projections of the time-averaged flow field were used to identify, qualitatively, the main structures of the wake, including the horseshoe vortex, corner vortices and regions of high streamwise vorticity in the upper part of the wake. These features showed the same qualitative behavior as reported in high Reynolds number studies. It was found that some regions of high streamwise vorticity magnitude, like the tip vortices, are associated with the three-dimensional bending of the flow, and the tip vortices did not continuously extend to the free end of the prism. The three-dimensional flow analysis, which integrated different observations of the flow field around surface-mounted finite-height square prisms, also revealed that the mean near-wake structure is composed of two sections of different origin and location of dominance.  相似文献   

18.
The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number. The project supported by the State Key Fundamental Research Project of “Large Scale Scientific Computation Research” (G199903281)  相似文献   

19.
A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall.  相似文献   

20.
A passive control, based on wall suction acting at the leading edge, is proposed to stabilize the vortex shedding from a flat plate at incidence. The correct suction amount is determined by a potential flow model where the large-scale vortical structures formed near the plate edges are represented by point vortices of variable intensity, and the wall suction by an adequately placed sink. We concentrate on the case of a plate that is broadside to the flow and show that the stabilization of the vortex wake can be obtained by simple passive backside suction. In such a case geometric shaping and passive suction have similar effects on the vortex Hamiltonian. The model predictions compare well with the results obtained by blob-vortex simulations, thus confirming the stabilization of the unsteady wake past the plate. Received 5 April 2002 and accepted 6 August 2002 Published online 3 December 2002 Communicated by M.Y. Hussaini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号