首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate bounded traveling waves of the generalized nonlinear Klein–Gordon model equations by using bifurcation theory of planar dynamical systems to study the effects of horizontal singular straight lines in nonlinear wave equations. Besides the well-known smooth traveling wave solutions and the non-smooth ones, four kinds of new bounded singular traveling wave solution are found for the first time. These singular traveling wave solutions are characterized by discontinuous second-order derivatives at some points, even though their first-order derivatives are continuous. Obviously, they are different from the singular traveling wave solutions such as compactons, cuspons, peakons. Their implicit expressions are also studied in this paper. These new interesting singular solutions, which are firstly founded, enrich the results on the traveling wave solutions of nonlinear equations. It is worth mentioning that the nonlinear equations with horizontal singular straight lines may have abundant and interesting new kinds of traveling wave solution.  相似文献   

2.
This paper studies nonlinear waves in a prestretched cylinder composed of a Blatz-Ko material. Starting from the three-dimensional field equations, two coupled PDEs for modeling weakly nonlinear long waves are derived by using the method of coupled series and asymptotic expansions. Comparing with some other existing models in literature, an important feature of these equations is that they are consistent with traction-free surface conditions asymptotically. Also, the material nonlinearity is kept to the third order. As these two PDEs are quite complicated, the attention is focused on traveling waves, for which a first-order system of ODEs are obtained. We use the technique of dynamical systems to carry out the analysis. It turns out that the system is three parameters (the prestretch, the propagating speed and an integration constant) dependent and there are totally seven types of phase planes which contain trajectories representing bounded traveling waves. The parametric conditions for each phase plane are established. A variety of solitary and periodic waves are found. An important finding is that kink waves can propagate in a Blatz-Ko cylinder. We also find that one type of periodic waves has an interesting feature in the profile slope. Analytical expressions for all bounded traveling waves are obtained.  相似文献   

3.
In this paper, we consider a dissipative-dispersive nonlinear equation appliable to many physical phenomena. Using the geometric singular perturbation method based on the theory of dynamical systems, we investigate the existence of its traveling wave solutions with the dissipative terms having sufficiently small coefficients. The results show that the traveling waves exist on a two-dimensional slow manifold in a three-dimensional system of ordinary differential equations (ODEs). Then, we use the Melnikov method to establish the existence of a homoclinic orbit in this manifold corresponding to a solitary wave solution of the equation. Furthermore, we present some numerical computations to show the approximations of such wave orbits.  相似文献   

4.
We prove the existence of multidimensional traveling-wave solutions to the scalar equation for the transport of solutes (contaminants) with nonlinear adsorption and spatially periodic convection-diffusion-adsorption coefficients under the assumption that the nonlinear adsorption function satisfies the Lax and Oleinik entropy conditions. In the nondegenerate case, we also prove the uniqueness of the traveling waves. These traveling waves are analogues of viscous shock profiles. They propagate with effective speeds that depend on the periodic porous media only up to their mean states, and are given by an averaged Rankine-Hugoniot relation. This is a direct consequence of the fact that the transport equation is in conservation form. We use the sliding domain method, the continuation method, spectral theory, maximum principles, and a priori estimates. In the degenerate case, the traveling waves are weak solutions of a degenerate parabolic equation and are only Holder continuous. We obtain them by taking suitable limits on the non-degenerate traveling waves. The uniqueness of the degenerate traveling waves is open.  相似文献   

5.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

6.
The nonlinear Schr?dinger equation has several families of quasi-periodic traveling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the same period and the same Floquet exponent. This generalizes a previous work (Gallay and Haragus, J. Diff. Equations, 2007) where only small amplitude solutions were considered. A similar result is obtained in the focusing case, under a non-degeneracy condition which can be checked numerically. The proof relies on the general approach to orbital stability as developed by Grillakis, Shatah, and Strauss, and requires a detailed analysis of the Hamiltonian system satisfied by the wave profile.  相似文献   

7.
Traveling gravity-capillary water waves on the interface of a three-dimensional fluid of infinite depth are computed. The vortex sheet formulation with the small scale approximation is used as the mathematical model for the fluid motion. The fluid interface is parameterized isothermally. The traveling wave ansatz for parameterized surfaces is described. Waves are computed using Fourier collocation and quasi-Newton iteration; large amplitude overturned traveling waves are computed via a dimension-breaking based numerical continuation method.  相似文献   

8.
We investigate the existence of traveling wave solutions for a system of reaction–diffusion equations that has been used as a model for microbial growth in a flow reactor and for the diffusive epidemic population. The existence of traveling waves was conjectured early but only has been proved recently for sufficiently small diffusion coefficient by the singular perturbation technique. In this paper we show the existence of traveling waves for an arbitrary diffusion coefficient. Our approach is a shooting method with the aid of an appropriately constructed Liapunov function.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday.Wenzhang Huang-Research was supported in part by NSF Grant DMS-0204676.  相似文献   

9.
We study a model for the lateral propagation of a combustion front through a porous medium with two parallel layers having different properties. The reaction involves oxygen and a solid fuel. In each layer, the model consists of a nonlinear reaction–diffusion–convection system, derived from balance equations and Darcy’s law. Under an incompressibility assumption, we obtain a simple model whose variables are temperature and unburned fuel concentration in each layer. The model includes heat transfer between the layers. We find a family of traveling wave solutions, depending on the heat transfer coefficient and other system parameters, that connect a burned state behind the combustion front to an unburned state ahead of it. These traveling waves are strong: they correspond to connecting orbits of a system of five ordinary differential equations that lie in the unstable manifold of a hyperbolic saddle and the stable manifold of a nonhyperbolic equilibrium. We argue that for physically relevant initial conditions, traveling waves that correspond to connecting orbits that approach the nonhyperbolic equilibrium along its center direction do not occur. When the heat transfer coefficient is small, we prove that strong traveling waves exist for a small range of system parameters, near parameter values where the two layers individually admit strong traveling waves with the same speed. When the heat transfer coefficient is large, we prove that strong traveling waves exist for a very large range of parameters. For small heat transfer, combustion typically does not occur simultaneously in the two layers; for large heat transfer, it does. The proofs use geometric singular perturbation theory. We give a numerical method to solve the nonlinear problem, and we present numerical simulations that indicate that the traveling waves we have found are in fact the dominant feature of solutions.  相似文献   

10.
In this paper, we study the time periodic traveling wave solutions for a periodic SIR epidemic model with diffusion and standard incidence. We establish the existence of periodic traveling waves by investigating the fixed points of a nonlinear operator defined on an appropriate set of periodic functions. Then we prove the nonexistence of periodic traveling via the comparison arguments combined with the properties of the spreading speed of an associated subsystem.  相似文献   

11.
Rogue waves in random sea states modeled by the JONSWAP power spectrum are high amplitude waves arising over non-uniform backgrounds that cannot be viewed as small amplitude modulations of Stokes waves. In the context of Nonlinear Schrödinger (NLS) models for waves in deep water, this poses the challenge of identifying appropriate analytical solutions for JONSWAP rogue waves, investigating possible mechanisms for their formation, and examining the validity of the NLS models in these more realistic settings. In this work we investigate JONSWAP rogue waves using the inverse spectral theory of the periodic NLS equation for moderate values of the period. For typical JONSWAP initial data, numerical experiments show that the developing sea state is well approximated by the first few dominant modes of the nonlinear spectrum and can be described in terms of a 2- or 3-phase periodic NLS solution. As for the case of uniform backgrounds, proximity to instabilities of the underlying 2-phase solution appears to be the main predictor of rogue wave occurrence, suggesting that the modulational instability of 2-phase solutions of the NLS is a main mechanism for rogue wave formation and that heteroclinic orbits of unstable 2-phase solutions are plausible models of JONSWAP rogue waves. To support this claim, we correlate the maximum wave strength as well as the higher statistical moments with elements of the nonlinear spectrum. The result is a diagnostic tool widely applicable to both model or field data for predicting the likelihood of rogue waves. Finally, we examine the validity of NLS models for JONSWAP data, and show that NLS solutions with JONSWAP initial data are described by non-Gaussian statistics, in agreement with the TOPEX field studies of sea surface height variability.  相似文献   

12.
A meshless numerical model for nonlinear free surface water wave is presented in this paper. An approach of handling the moving free surface boundary is proposed. Using the fundamental solution of the Laplace equation as the radial basis functions and locating the source points outside the computational domain, the problem is solved by collocation of only a few boundary points. Present model is first applied to simulate the generation of periodic finite‐amplitude waves with high wave‐steepness and then is employed to simulate the modulation of monochromatic waves passing over a submerged obstacle. Good agreements are observed as compared with experimental data and other numerical models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Recent experiments have indicated the presence of traveling composition waves along catalytic surfaces, waves that are accompanied by (and have come to be associated with) crystallographic changes in the catalyst itself during the course of reaction. We show, however, that ancillary phenomena of this kind are not essential to the existence of traveling composition waves. In particular, we use Conley index arguments to show that, for a large family of classical catalytic mechanisms (taken with Fick-type diffusion along the catalyst surface), the corresponding reaction-diffusion equations already have the capacity to admit stable traveling waves.  相似文献   

14.
Water waves in an elastic vessel   总被引:2,自引:0,他引:2  
Linear and nonlinear analyses of water waves in an elastic vessel are carried out to study the dramatic phenomena of Dragon Wash as well as related controllable experiments. It is proposed that the capillary edge waves are generated by parametric resonance, which is shown to be a possible mechanism for both rectangular an circular vessels. For circular vessel, the normal geometric resonance is also operating, thus greatly enhance the dramatic effect. The mechanism of nonlinear mode-mode interaction is proposed for the generation of axisymmetric low-frequency gravity waves by the high- frequency external excitation. A simple model system is studied numerically to demonstrate explicitly this interaction mechanism.  相似文献   

15.
By using the matched asymptotic expansion method and the idea of edge layer, a mathematic model for describing the interaction between weakly nonlinear shallow-water waves and three-dimensional floating bodies is formed in the paper. As a numerical example, the diffraction of a solitary wave around a vertically floating circular cylinder has been investigated and the results are presented. The present method can further be extended to the study of wave diffraction around floating bodies of general shape. The project is supported by the National Natural Science Foundation of China.  相似文献   

16.
The propagation of large amplitude nonlinear waves in a peridynamic solid is analyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. It is demonstrated by numerical studies that the waves interact only weakly with each other when they collide. Wavetrains composed of many non-interacting solitary waves are found to form and propagate under certain boundary and initial conditions.  相似文献   

17.
We review work of Jordan on a hyperbolic variant of the Fisher–KPP equation, where a shock solution is found and the amplitude is calculated exactly. The Jordan procedure is extended to a hyperbolic variant of the Chafee–Infante equation. Extension of Jordan’s ideas to a model for traffic flow are also mentioned. We also examine a diffusive susceptible–infected (SI) model, and generalizations of diffusive Lotka–Volterra equations, including a Lotka–Volterra–Bass competition model with diffusion. For all cases we show how a Jordan–Cattaneo wave may be analysed and we indicate how to find the wavespeeds and the amplitudes. Finally we present details of a fully nonlinear analysis of acceleration waves in a Cattaneo–Christov poroacoustic model.  相似文献   

18.
A second-order asymptotic expression for the profile of a capillary-gravity wave traveling over the charged surface of an ideal incompressible fluid is calculated analytically. Two types of steady-state profiles of nonlinear periodic capillary-gravity waves are found. For a certain fixed dimensionless surface charge the shape of the tops of the nonlinear waves changes: from blunt to pointed for short waves and from pointed to blunt for long waves.  相似文献   

19.
A comparative analysis of two types of hyperelastic waves—plane waves (with plane front) and cylindrical waves (with curved front)—is offered. The propagation of the waves is studied theoretically for quadratically nonlinear hyperelastic media and numerically for a class of unidirectional fibrous composite materials. Hyperelasticity is described using the classical Murnaghan potential and a structural model of the first order—the model of effective constants. The internal structure of materials is described by this model and is at the micro-or nanolevels in numerical analysis. Particular attention is given to the evolution of the wave profile. It is studied in three stages: (i) derivation of nonlinear wave equations, (ii) construction of solutions in the form of plane and cylindrical waves, and (iii) numerical analysis of the evolution of these waves in composites with microlevel (Thornel) or nanolevel (Z-CNT) fibers. The main similarities and differences between plane longitudinal and cylindrical waves are shown. The most unexpected result is the striking difference between the evolution patterns numerically observed for plane and cylindrical wave profiles __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 21–46, October 2006.  相似文献   

20.
We study traveling wave solutions arising in Sivashinsky’s model of subsonic detonation which describes combustion processes in inert porous media. Subsonic (shockless) detonation waves tend to assume the form of a reaction front propagating with a well defined speed. It is known that traveling waves exist for any value of thermal diffusivity [5]. Moreover, it has been shown that, when the thermal diffusivity is neglected, the traveling wave is unique. The question of whether the wave is unique in the presence of thermal diffusivity has remained open. For the subsonic regime, the underlying physics might suggest that the effect of small thermal diffusivity is insignificant. We analytically prove the uniqueness of the wave in the presence of non-zero diffusivity through applying geometric singular perturbation theory. Dedicated to Mr. Brunovsky in honor of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号