首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavior of polymer melts in biaxial as well as uniaxial elongational flow is studied based on the predictions of three constitutive models (Leonov, Giesekus, and Larson) with single relaxation mode. Transient elongational viscosities in both flows are calculated for three constitutive models, and steady-state elongational viscosities are obtained as functions of strain rates for the Giesekus and the Larson models.Change of elongational flow behavior with adjustable parameter is investigated in each model. Steady-state viscosities E and B are obtained for the Leonov model only when the strain-hardening parameter is smaller than the critical value cr determined in each flow. In this model, uniaxial elongational viscosity E increases with increasing strain rate , while biaxial elongational viscosity B decreases with increasing biaxial strain rate B . The Giesekus model predictions depend on the anisotropy parameter . E and B increase with strain rates for small B while they decrease for large . When is 0.5, E in increasing, but B is decreasing. The Larson model predicts strain-softening behavior for both flows when the chain-contraction parameter > 0.5. On the other hand, when is small, the steady-state viscosities of this model show distinct maximum around = B = 1.0 with relaxation time . The maximum is more prominent in E than in B .  相似文献   

2.
A. Papo 《Rheologica Acta》1988,27(3):320-325
Shear stress and shear rate data obtained for gypsum plaster pastes were correlated by means of different rheological models. The pastes were prepared from a commercial calcium sulfate hemihydrate at various water/plaster ratios ranging from 100/150 to 100/190. The tests were performed at 25°C using a rotating coaxial cylinder viscosimeter. The measurements were accomplished by applying a step-wise decreasing shear rate sequence. Discrimination among the models was made: (1) on the basis of the fitting goodness; (2) by checking the physical meaning of the calculated parameters; (3) on the basis of the stability of the parameters and of their prediction capacity beyond the limits of the experimental data. In the light of above, the Casson model seemed to be most effective for application to gypsum plaster pastes. K Consistency - n Power-law index - N Number of experimental data - P Number of parameters - Shear rate (s–1) - 0 Viscosity (Pa · s) - d Dispersing medium viscosity (Pa · s) - p Plastic viscosity (Pa · s) - Viscosity at zero shear rate (Pa · s) - Viscosity at infinite shear rate (Pa · s) - [] Intrinsic viscosity - 2 Variance - Shear stress (Pa) - 0 Yield stress (Pa) - Solid volume fraction - m Maximum solid volume fraction  相似文献   

3.
A very simple reduction procedure is suggested for the blend viscosities of different polymer pairs. This procedure is based on the comparison of the blend viscosity, normalized either to the matrix or to the disperse phase viscosity, with the viscosities ratio of the initial polymers ( m / d ). We have obtained, for 13 different pairs containing 30% of the second component, the universal linear dependencies, mutual analysis of which allows connection of their special points with the stream morphology. The fibrillous morphology takes place in the range of m / d = 0, 1–5. Simultaneous, the thin skin consisting of the disperse phase polymers is formed. These results confirm the predominant role of the viscosities ratio in fibrillar composite material formation in comparison with the interphase tension phenomena.  相似文献   

4.
Neck propagation in the stretching of elastic solid filaments having a yield point was analyzed using the space one-dimensional thin filament governing equations developed previously by the authors and other researchers. Constitutive model for the filament was assumed to be expressible as engineering tensile stress(X) (tensile force) given as a function of elongational strain with the(X) curve having a yield point maxima followed by a minima and a breaking point greater than the yield point maxima. Also incorporated into the model is the hysteresis of irreversible plastic deformation. When inertia is taken into consideration, the thin filament equations were found to reduce to the nonlinear wave equation 2 (X)/ 2 =C 1 2 X/ 2 where is Lagrangean space coordinate, is time, andC 1 is inertia coefficient. The above nonlinear wave equation yields a solutionX(, ) having a stepwise discontinuity inX which propagates along the axis. The zero speed limit of the step wave solution was found to describe the above neck propagation occurring in solid filaments. Furthermore, it was recognized that the nonlinear wave equation was known for many years to also govern the plastic shock wave which propagates axially within a metal rod subjected to a very strong impact on its end. The one-dimensional atmospheric shock wave also was known to be governed by the nonlinear wave equation upon making certain simplifying assumptions. The above and other evidences lead to the conclusion that neck propagation occurring in the extension of solid filament obeying the above(X) function can be formally described as a shock wave.  相似文献   

5.
Predictions are made for the elongational-flow transient rheological properties of the dilute-solution internal viscosity (IV) model developed earlier by Bazua and Williams. Specifically, the elongational viscosity growth function e + (t) is presented for abrupt changes in the elongational strain rate . For calculating e +, a novel treatment of the initial rotation of chain submolecules is required; such rotation occurs in response to the macroscopic step change of at t = 0. Representative are results presented for N = 100 (N = number of submolecules) and = 1000 f and 10000 f (where is the IV coefficient and f is the bead friction coefficient), using h * = 0 (as in the original Rouse model) for the hydrodynamic interaction. The major role of IV is to cause the following changes relative to the Rouse model: 1) abrupt stress jump at t = 0 for e +; 2) general time-retardance of response. There is no qualitative change from the Rouse-model prediction of unbounded il growth when exceeds a critical value ( ), and calculations of submolecule strains at various show that the unbounded- e behavior arises from unlimited submolecule strains when . However, the time-retardance could delay such growth beyond the timescale of most experiments and spinning processes, so that the instability might not be detected. Finally, e + (t) and e ( ) in the limit are presented for N = 1 and compared with exact predictions for the analogous rigid-rod molecule; close agreement lends support for the new physical approximation introduced for solving the transient dynamics for any N.  相似文献   

6.
In the thermally developing region, d yy /dx| y=h varies along the flow direction x, where yy denotes the component of stress normal to the y-plane; y = ±h at the die walls. A finite element method for two-dimensional Newtonian flow in a parallel slit was used to obtain an equation relating d yy /dx/ y=h and the wall shear stress 0 at the inlet; isothermal slit walls were used for the calculation and the inlet liquid temperature T0 was assumed to be equal to the wall temperature. For a temperature-viscosity relation /0 = [1+(T–T0]–1, a simple expression [(hd yy /dx/ y=h )/ w0] = 1–[1-F c(Na)] [M()+P(Pr) ·Q(Gz –1)] was found to hold over the practical range of parameters involved, where Na, Gz, and Pr denote the Nahme-Griffith number, Graetz number, and Prandtl number; is a dimensionless variable which depends on Na and Gz. An order-of-magnitude analysis for momentum and energy equations supports the validity of this expression. The function F c(Na) was obtained from an analytical solution for thermally developed flow; F c(Na) = 1 for isothermal flow. M(), P(Pr), and Q(Gz) were obtained by fitting numerical results with simple equations. The wall shear rate at the inlet can be calculated from the flow rate Q using the isothermal equation.Notation x,y Cartesian coordinates (Fig. 2) - , dimensionless spatial variables [Eq. (16)] - dimensionless variable, : = Gz(x)–1 - dimensionless variable [Eq. (28)] - t,t * time, dimensionless time [Eq. (16)] - , velocity vector, dimensionless velocity vector - x , velocity in x-direction, dimensionless velocity - y , velocity in y-direction, dimensionless velocity - V average velocity in x-direction - yy , * normal stress on y-planes, dimensionless normal stress - shear stress on y-planes acting in x-direction - w , w * value of shear stress stress at the wall, dimensionless wall shear stress - w0, w0 * wall shear stress at the inlet, dimensionless variable - , * rate-of-strain tensor, dimensionless tensor - wall shear rate, wall shear rate at the inlet - Q flow rate - T, T 0, temperature, temperature at the wall and at the inlet, dimensionless temperature - h, w half the die height, width of the die - l,L the distance between the inlet and the slot region, total die length - T 2, T 3, T 4 pressure transducers in the High Shear Rate Viscometer (HSRV) (Fig. 1) - P, P2, P3 pressure, liquid pressures applied to T 2 and T 3 - , 0, * viscosity, viscosity at T = T 0, dimensionless viscosity - viscosity-temperature coefficient [Eq. (8)] - k thermal conductivity - C p specific heat at constant pressure - Re Reynolds number - Na Nahme-Griffith number - Gz Graetz number - Pr Prandtl number  相似文献   

7.
Assuming the formation of doublets in the flow according to a mass action law, the shear rate and the concentration dependence of the extinction angle, of the birefringence, and of the average coil expansion are calculated for dilute solutions of flexible macromolecules. It is shown that this reversible association process has a strong influence on the measurable parameters in a flow birefringence experiment. c concentration (g/cm3) - h 2 mean square end-to-end distance at shear rate - h 0 2 mean-square end-to-end distance at zero-shear rate - n refractive index of the solution (not very different from the solvent for a very dilute solution) - E mean coil expansion - K 0,K constant of the mass action law - M molecular weight - R G gas constant - T absolute temperature - 12 optical anisotropy of the segment - 0 Deborah number: - Deborah number: - shear rate - 0, reduced concentration - s viscosity of the solvent - [] 0 intrinsic viscosity at zero-shear rate - [] intrinsic viscosity at shear rate - extinction angle - N a Avodagro's number - n magnitude of the birefringence  相似文献   

8.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

9.
Linear and branched poly(butyleneisophthalate) samples were synthesized and characterized in terms of the intrinsic viscosity, the molecular weight and the melt viscosity over a wide range of shear rates at 200 °C. An exponent of about 4.6 in the equation relating 0 to was found for linear samples; this high value is probably due to the high content of cyclic oligomers in low molecular weight samples. Both linear and branched samples exhibited Newtonian behaviour over a rather wide range of shear rates, but for any given melt-viscosity, the branched samples became shear thinning at lower shear rates than the linear ones. Our experimental data were found to fit a previously proposed correlation between the melt viscosity ratio ( 0, b / 0, 1 ) and a branching index quite well.  相似文献   

10.
An experimental investigation was undertaken to study the apparent thickening behavior of dilute polystyrene solutions in extensional flow. Among the parameters investigated were molecular weight, molecular weight distribution, concentration, thermodynamic solvent quality, and solvent viscosity. Apparent relative viscosity was measured as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm I.D. tube. As increased, slight shear thinning behavior was observed up until a critical wall shear rate was exceeded, whereupon either a large increase in or small-scale thickening was observed depending on the particular solution under study. As molecular weight or concentration increased, decreased and, the jump in above , increased. increased as thermodynamic solvent quality improved. These results have been interpreted in terms of the polymer chains undergoing a coil-stretch transition at . The observation of a drop-off in at high (above ) was shown to be associated with inertial effects and not with chain fracture due to high extensional rates.  相似文献   

11.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

12.
The rheological properties of glass fibre-filled polypropylene melts have been investigated. A high pressure capillary rheometer has been used for the experimental study. The effect of shear rate, temperature, and fibre concentration on the melt viscosity and viscoelastic properties have been studied. An equation has been proposed to correlate the melt viscosity with shear rate, temperature and fibre content. A master curve relation on this basis has been brought out using the shift factora T . a T shift factor (=/ r ) - A i coefficients of the polynomical of eq. (1) (i = 0, 1, 2, ,n) - B constant in the AFE equation (eq. (2)) (Pa s) - B constant in eq. (3) - D extrudate diameter - d capillary diameter - activation energy at constant shear rate (kcal/mole) - E activation energy at constant shear stress (kcal/mole) - T melt temperature (K) - X fraction glass fibre by weight - shear rate (s–1) - shear viscosity (Pa s) - normal stress coefficient (Pa s2) - 1 2 first normal-stress difference (Pa) - shear stress (Pa) - r at reference temperature  相似文献   

13.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

14.
The effect of temperature on the steady-shear viscosity of two base emulsions (water-in-creosote (w/o) and creosote-in-water (o/w)) and a pigment emulsified creosote (PEC) was investigated. The PEC is a water-in-creosote emulsion which contains also a solid, micronised pigment, and is used industrially as a wood preservative. All three emulsions exhibited shear thinning characteristics at different temperatures. The viscosity-shear rate relationships follow a modified Quemada model. A temperature-superposition method using the reduced variables / and t c was applied to yield a master plot for each of these emulsions at different temperatures. The effect of creosote concentration on the viscosity of four other o/w emulsions at different temperatures was also studied. The same reduced variables were able to produce a temperature-concentration superposition plot for all of the o/w emulsion results.The effective (average) radius of the globules (dispersed phase) was found to increase with increasing temperature for the base w/o and the PEC emulsion. The collision theory could be used to explain the increase in the droplet size. However, while little overall variation in globule size was observed for the o/w emulsions, microscopic observation indicated an increase in the proportion of large diameter droplets with temperature at the highest creosote concentration (60%). A creaming effect (phase concentration) was observed with these emulsions at higher temperatures, precluding an accurate estimate of droplet size based on collision theory.Seconded from Koppers Coal Tar Products, Newcastle, N.S.W., Australia.  相似文献   

15.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   

16.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

17.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

18.
J. Kunnen 《Rheologica Acta》1988,27(6):575-579
The Fulcher-Tammann-Hesse-Vogel equation, ln = A + B/(T – T 0 ), is shown to be equivalent to the general viscosity-composition relationship, ln r =k f /(1 – f ), for binary mixtures. The Cailletet-Mathias law of the Rectilinear Diameter is rearranged to represent a density mixture formula for two components. Temperature-independent viscosities and densities can then be calculated for dense, solid cluster fractions, dispersed in a low-density, low-viscosity non-clustered continuous phase. The cluster fraction decreases with temperature. The value ofT 0 is shown to be related to the liquid- or solid-like behavior of the clusters. For liquids with a vapor pressure < 1 mm Hg at the melting point, the calculated cluster volume fraction suggests close packing of clusters, ranging in shape from monodisperse spheres to polydisperse non-spherical particles. Examples are given for molecular liquids, molten metals, and molten salts. The size of the clusters is estimated from the heat of evaporation.  相似文献   

19.
An analytical study was made to examine the effect of vascular deformability on the pulsatile blood flow in arterioles through the use of a suitable mathematical model. The blood in arterioles is assumed to consist of two layers — both Newtonian but with differing coefficients of viscosity. The flow characteristics of blood as well as the resistance to flow have been determined using the numerical computations of the resulting expressions. The applicability of the model is illustrated using numerical results based on the existing experimental data. r, z coordinate system - u, axial/longitudinal velocity component of blood - p pressure exerted by blood - b density of blood - µ viscosity of blood - t time - , displacement components of the vessel wall - T t0,T 0 known initial stresses - density of the wall material - h thickness of the vessel wall - T t,T stress components of the vessel - K l,K r components of the spring coefficient - C l,C r components of the friction coefficient - M a additional mass of the mechanical model - r 1 outer radius of the vessel - thickness of the plasma layer - r 1 inner radius of the vessel - circular frequency of the forced oscillation - k wave number - E 0,E t, , t material parameters for the arterial segment - µ p viscosity of the plasma layer - Q total flux - Q p flux across the plasma zone - Q h flux across the core region - Q mean flow rate - resistance to flow - P pressure difference - l length of the segment of the vessel  相似文献   

20.
A hot-film probe has been used to measure slip of high-density polyethylene flowing through a conduit with a rectangular cross section. A transition from no slip to a stick-slip condition has been observed and associated with irregular extrudate shape. Appreciable extrudate roughness was initiated at the same flow rate as that at which the relationship between Nusselt number and Péclet number for heat transfer from the probe departed from the behavior expected for a no-slip condition at the conduit wall. A 1 constant defined by eq. (A3) - C dimensionless group used in eq. (7) - C p heat capacity - D constant in eq. (13) - f u s/u - f lin defined by eq. (A6) - G storage modulus - G loss modulus - k thermal conductivity - L length of hot film in thex-direction - L eff effective length of large probe found from eq. (A3) - Nu L Nusselt number, defined for a lengthL by eq. (2) - (Nu L)0 value ofNu L atPe = 0 (eq. (A 1)) - Pe Péclet number,uL/ - Pe 0 Péclet number in slip flow, eq. (6) - Pe 1 Péclet number in shear flow, eq. (4) - q L average heat flux over hot film of lengthL - R i resistances defined by figure 8 - R AB correlation coefficient defined by eq. (14) for signalsA andB - T temperature - T s temperature of probe surface - T ambient temperature - T T sT - u average velocity - u s slip velocity - V b voltage indicated in figure 8 - W probe dimension (figure 6) - x distance in flow direction (figure 1) - y distance perpendicular to flow direction (figure 1) - thermal diffusivity,k/C p - wall shear rate - 5% thickness of lubricating layer during probe calibration for introduction of an error no greater than 5%; see Appendix I - * complex viscosity - density - time - c critical shear stress, eq. (13) - w wall shear stress - frequency characterizing extrudate distortion (figures 12 and 13), or frequency of oscillation during rheometric characterization (figures 18–20) - * quantity obtained from normalized Nusselt number, eq. (A1), or complex viscosity * - A actual (small) probe (see Appendix I) - M model (large) probe (see Appendix I)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号