首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction factors associated with forced flow of de-ionized water over staggered and in-line micro/mini cylinder group plates with 3.5 mm width and 40 mm length, which are made of micro/mini cylinders with hydraulic diameter of 0.5 mm and the heights of 1.0 mm, 0.75 mm, 0.5 mm and 0.25 mm, respectively, have been experimentally investigated over Reynolds number ranging from 25 to 800. The flux and the pressure drop between the inlet and the outlet of micro/mini cylinder group are measured and the experimental results are compared with those of convectional correlations. The investigation shows the value of fRe is approximately the constant in micro/mini cylinder group plates when the flow is purely laminar state. Except test sections with 0.25 mm cylinder height, the values of fRe for other test sections increase when Re > 100, as the results of the appearance of vortex resistance, the enhancement of stream pulse and the acceleration of stream frequency. For test section with 0.25 mm cylinder height, the values of fRe rapidly and oscillatingly increase at Re > 150 due to the influence of the scale effect, tip clearance effect and the roughness effect on the cylinder surface and bottom of micro/mini cylinder group plates. The friction factor in a staggered array is much larger than that at in-line array for micro/mini cylinder group plates and the higher the cylinder height is, the lower the friction factor becomes.  相似文献   

2.
An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length-to-diameter ratio (l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet-to-plate spacing between 0.5 and 8 nozzle diameters. The local heat transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.  相似文献   

3.
This combined experimental and numerical study focuses on impingement jet cooling in combination with detached rib turbulators on a flat target for turbomachinery applications. The investigated impingement array consists of an impingement plate with 9 × 9 jet holes with diameter D and a target plate with detached ribs installed beneath the jet hole. The effects of different separation distances (H/D=3-5), jet Reynolds numbers (15,000-35,000) and rib clearances (0.3D and 0.08D) are investigated. The heat transfer is investigated experimentally by the transient liquid crystal (TLC) method. A computational fluid dynamics (CFD) model is carried out within the software package ANSYS CFX. This model uses a steady-state three-dimensional Reynolds-Averaged Navier-Stokes (RANS) approach with the Shear Stress Transport (SST) turbulence model. Numerical simulations allow detailed insight into the fluid mechanics of the complex flow field and complement experimental measurements. Detached ribs in the impingement channel have a strong influence on the flow field and can increase the global Nusselt number by up to 4% if the ribs have adiabatic boundary conditions. The usage of the detached rib reduces the relative discharge coefficient by up to 11% compared to a smooth target.  相似文献   

4.
A micro heat exchanger (MHE) can effectively control the temperature of surfaces in high heat flux applications. In this study, several turbulence models are analyzed using a 3D finite element model of a MHE. The MHE consists of a narrow planar flow passage between flat parallel plates with small cylindrical pin fins spanning these walls. The pin fin array geometry investigated is staggered, with pin diameters of 0.5, 5.1 and 8.5 mm, height to diameter ratio of 1.0 and streamwise (longitudinal) and spanwise (transverse) to diameter ratios of 1.5 and 2.5, respectively. Pressure loss and heat transfer simulated results for 4,000 ≤ Re ≤ 50,000 are reported and compared with previously published numerical and experimental results. It was found that the flat micro pin fin overall thermal performance always exceeds that of the parallel plate counterpart (smooth channel) by a factor of as much as 2.2 for the 8.5 mm diameter pins, and by 4 for the 0.5 mm diameter pins in the investigated Reynolds number range. Further, among the six turbulence models investigated, the RNG model tends to be the best model to predict both the Nusselt number and the friction factor and capture the main feature of the flow field in MHE.  相似文献   

5.
The flow and heat transfer in an inclined and horizontal rectangular duct with a heated plate longitudinally mounted in the middle of cross section was experimentally investigated. The heated plate and rectangular duct were both made of highly conductive materials, and the heated plate was subjected to a uniform heat flux. The heat transfer processes through the test section were under various operating conditions: Pr ≈ 0.7, inclination angle ϕ = −60° to +60°, Reynolds number Re = 334–1,911, Grashof number Gr = 5.26 × 102–5.78 × 106. The experimental results showed that the average Nusselt number in the entrance region was 1.6–2 times as large as that in the fully developed region. The average Nusselt numbers and pressure drops increased with the Reynolds number. The average Nusselt numbers and pressure drops decreased with an increase in the inclination angle from −60° to +60° when the Reynolds number was less than 1,500. But when the Reynolds number increased to over about 1,800, the heat transfer coefficients and pressure drops were independent of inclination angles.  相似文献   

6.
Effects of buoyancy forces on forced and free convective flow of water at 4°C past a semi-infinite vertical plate at constant temperature are studied. Flow is assumed to be vertically upwards. Similarity solutions are derived and the resulting equations are solved numerically on a computer. Velocity and temperature profiles are shown graphically and numerical values of the skin friction and the rate of heat transfer are entered in tables. It is observed that the skin friction and the Nusselt number increase with increasing Gr/Re2, where Gr is the Grashof number and Re is the Reynolds number  相似文献   

7.
Experimental and numerical studies were carried out to investigate forced convection heat transfer and flow features around the downstream elliptic cylinder in four staggered cylinders in cross flow. The elliptic cylinders examined had an axis ratio (b/c) of 1:2, and they were arranged with zero angle of attack to the upstream flow. The present heat transfer measurements were obtained by heating only the downstream elliptic cylinder (test cylinder) under the condition of constant heat flux. The testing fluid was air and the Reynolds number based on the major axis length (c) was ranged from 4,000 to 45,570. The tested longitudinal spacing ratio (Sx/c) and the transversal spacing ratio (Sy/b) were in the ranges of 1.5 ≤ Sx/c ≤ 4.0 and 1.5 ≤ Sy/b ≤ 4.0, respectively. The air flow pattern and temperature fields around the four staggered elliptic cylinders were predicted by using CFD software package. Also, a flow visualization study was made to show the flow features around the elliptic cylinders. It was observed that Num of the downstream elliptic cylinder in four staggered cylinders was higher than that of three in-line cylinders for all tested spacing ratios and Reynolds numbers except for Re = 4,000. It was clear that, at lower Reynolds number values (Re < 14,100), the average Nusselt number of the downstream elliptic cylinder in three staggered arrangement was higher than that of the downstream cylinder in four staggered arrangement for all tested spacing ratios. On the other hand, at Re > 14,100, the tested elliptic cylinder in four staggered arrangement had the higher values of the average Nusselt number. Moreover, in four staggered arrangement, the maximum average Nusselt number enhancement ratio (average Nusselt number of the tested downstream cylinder/average Nusselt number of a single elliptic cylinder) was found to be about 2.0, and was obtained for spacing ratios of Sx/c = 2.5, Sy/b = 2.5 and at Re = 32,000. Finally, the average Nusselt number of the tested cylinder in four staggered arrangement was correlated in terms of Reynolds number and cylinder spacing ratios.  相似文献   

8.
Steady state two-dimensional free convection heat transfer from a horizontal, isothermal cylinder in a horizontal array of cylinders consists of three isothermal cylinders, located underneath a nearly adiabatic ceiling is studied experimentally. A Mach–Zehnder interferometer is used to determine thermal field and smoke test is made to visualize flow field. Effects of the cylinders spacing to its diameter (S/D), and cylinder distance from ceiling to its diameter (L/D) on heat transfer from the centered cylinder are investigated for Rayleigh numbers from 1500 to 6000. Experiments are performed for an inline array configuration of horizontal cylinders of diameters D = 13 mm. Results indicate that due to the nearly adiabatic ceiling and neighboring cylinders, thermal plume resulted from the centered cylinder separates from cylinder surface even for high L/D values and forming recirculation regions. By decreasing the space ratio S/D, the recirculation flow strength increases. Also, by decreasing S/D, boundary layers of neighboring cylinders combine and form a developing flow between cylinders. The strength of developing flow depends on the cylinders Rayleigh number and S/D ratio. Due to the developing flow between cylinders, the vortex flow on the top of the centered cylinder appears for all L/D ratios and this vortex influences the value of local Nusselt number distribution around the cylinder.Variation of average Nusselt number of the centered cylinder depends highly on L/D and the trend with S/D depends on the value of Rayleigh number.  相似文献   

9.
An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w?=?4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.  相似文献   

10.
An experimental study is carried out to investigate flow characteristics of confined twin jets issuing from the lower surface and impinging normally on the upper surface. Pressure distributions on the impingement and confinement plates were obtained for Reynolds numbers ranging from 30,000 to 50,000, nozzle-to-plate spacing (H/D) in the range of 0.5-4 and jet-to-jet spacing (L/D) in the range of 0.5-2. Smoke-wire technique was used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and jet-to-jet spacing on the flow structure are examined. The subatmospheric regions occur on both impingement and confinement plates at the nozzle-to-plate spacing up to 1 for all studied Reynolds numbers and jet-to-jet spacings in consideration. They lie nearly up to the same radial location at both surfaces and move radially outward from the stagnation points with increasing nozzle-to-plate spacing and jet-to-jet spacing. It is concluded that there exists a relation between the subatmospheric regions and peaks in heat transfer coefficients for low spacings in the impinging jets.  相似文献   

11.
This paper reports the findings of experimental studies on combined free and forced convection through a plain square duct in laminar region. The test fluid flows through an inner square duct, hot water at high flow rate circulated through a annular channel formed between square duct and circular tube, in counter current fashion to attain a nearly uniform wall temperature conditions. The importance of mixed convection is judged by the value of the Richardson number (Ri). It was observed that at low Reynolds number, heat transfer was mainly governed by mixed convection. However at higher values of Reynolds number, heat transfer was significantly dominated by forced convection. It was found that Reynolds number higher than 1050 for water and 480 for ethylene glycol resulted in laminar forced convention heat transfer. The empirical correlation developed for Nusselt number in terms of Grashoff number and Graez number, was found to fit with experimental Nusselt number within ±11 and ±12?% for water and ethylene glycol respectively.  相似文献   

12.
Flow and heat transfer characteristics in transition and turbulent regions are studied experimentally and numerically in a horizontal smooth regular hexagonal duct under constant wall temperature boundary condition covering a range of Reynolds number from 2.3 × 103 to 52 × 103. Two types of k-omega (standard and shear stress transport (SST)) and three types of k-ε (standard, renormalization (RNG), and realizable) turbulence model are employed for transition and turbulent regions, respectively. Both average and fully developed Darcy friction factor and Nusselt number are presented as a function of Reynolds number. It is seen that k-omega SST and k-ε realizable turbulence models gave the best agreement with the experimental data in transition and turbulent regions, respectively. All the experimental results are correlated within an accuracy of ±13 % and ±7 % for Nusselt number and Darcy friction factor, respectively. Results obtained in this study are compared with circular duct results using hydraulic diameter.  相似文献   

13.
M. Narahari 《Meccanica》2012,47(8):1961-1976
The unsteady laminar free convection flow between two long vertical parallel plates with ramped wall temperature at one boundary has been investigated in the presence of thermal radiation and chemical species concentration. The exact solutions of the momentum, energy and concentration equations have been obtained using the Laplace transform technique. The velocity and temperature profiles, skin-friction and Nusselt number variations are shown graphically and the numerical values of the volume flow rate, the total heat rate and species rate added to the fluid are presented in a table. The influence of different system parameters such as the radiation parameter (R), buoyancy ratio parameter (N), Schmidt number (Sc) and time (t) has been analyzed carefully. A critical analysis of the coupled heat and mass transfer phenomena is provided. The free convective flow due to ramped wall temperature has also been compared with the baseline case of flow due to constant wall temperature.  相似文献   

14.
This paper deals with the problem of combined (forced and natural) convection from a horizontal cylinder performing oscillating rotary motion in a quiescent fluid of infinite extent. While forced convection is caused by cylinder oscillation, the natural convection is caused by the buoyancy driven flow. The heat transfer process is governed by Rayleigh number, Ra, Reynolds number, Re, and the dimensionless frequency of oscillation, S. The study covers Ra up to 103, Re up to 400 and S up to 0.8. The results showed that, for the same Ra, the time-averaged rate of heat transfer lies in between two limiting values. The first, is the steady state heat rate due to natural convection from a fixed cylinder and the second is the steady state heat rate from a cylinder rotating steadily at a speed equal to the maximum speed of rotational oscillation. The smaller the value of Re the nearer the time-averaged Nusselt number to that of fixed cylinder at the same Ra and the higher Re the lower the average Nusselt number. The effect of frequency is only limited to changing the amplitude of the fluctuating Nusselt number. Received on 15 December 1997  相似文献   

15.
The present study investigated experimentally the heat transfer from a heat source simulating an electronic chip mounted on a printed circuit board placed downstream of a guide fence on the lower wall of the flow passage with two different aspect ratios (H/W = 0.3 and 1). The channel height to the heat source height ratios (H/B) are of 10 and 3. The effect of the guide fence height (b) and the spacing between the guide fence and the heat source (S) were investigated. The guide fence was orientated such that guide fence extension point was varied from the midpoint of the front face of the heat source to the endpoint of the side face at 5000 ? ReL ? 30,000. The results for the heat source without guide fence displayed noticeable difference when compared with the flow over smooth plate placed on the lower wall of the flow passage. An enhancement in the convective heat transfer coefficient up to 20% is obtained when decreasing the flow passage height to the heat source height ratio from 10 to 3. Also, higher Nusselt number is located at the front face and the vertical sides of the heat source compared with that of the top surface. Nusselt number increases with the increase in both Reynolds number and the guide fence height while the effect of spacing between the guide fence and the heat source depending on the guide fence height. Correlations for the average Nusselt number were obtained utilizing the present measurements within the investigated range of the different parameters.  相似文献   

16.
Experiments have been performed to study the heat transfer process of swirling flow issued into a heated convergent pipe with a convergent angle of 5° with respect to the pipe axis. A flat vane swirler situated at the entrance of the pipe is used to generate the swirling flow. During the experiments, the Reynolds number ranges from 7970 to 47,820, and the swirl number from 0 to 1.2. It is found that the convergence of the pipe can accelerate the flow which has an effect to suppress the turbulence generated in the flow and reduce the heat transfer. However, in the region of weak swirl (= 0-0.65), the Nusselt numbers increase with increasing swirl numbers until = 0.65, where turbulence intensity is expected to be large enough and not suppressible. In the region of strong swirl (> 0.65), where recirculation flow is expected to be generated in the core of the swirling flow, the heat transfer characteristic can be altered significantly. At very high swirl (? 1.0), the accelerated flow in the circumferential direction is expected to be dominant, which leads to suppress the turbulence and reduce the heat transfer. The Nusselt number is found proportional to the swirl number. Correlations of the Nusselt numbers in terms of the swirl number, the Reynolds number and the dimensionless distance are attempted and are very successful in both the weak and the strong swirl regions.  相似文献   

17.
The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1–10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu stRe 0.69(H/D)0.019.  相似文献   

18.
《力学快报》2022,12(4):100350
Investigations into the magnetohydrodynamics of viscous fluids have become more important in recent years, owing to their practical significance and numerous applications in astro-physical and geo-physical phenomena. In this paper, the radial base function was utilized to answer fractional equation associated with fluid flow passing through two parallel flat plates with a magnetic field. The magnetohydrodynamics coupled stress fluid flows between two parallel plates, with the bottom plate being stationary and the top plate moving at a persistent velocity. We compared the radial basis function approach to the numerical method (fourth-order Range-Kutta) in order to verify its validity. The findings demonstrated that the discrepancy between these two techniques is quite negligible, indicating that this method is very reliable. The impact of the magnetic field parameter and Reynolds number on the velocity distribution perpendicular to the fluid flow direction is illustrated. Eventually, the velocity parameter is compared for diverse conditions α, Reynolds and position (y), the maximum of which occurs at α = 0.4. Also, the maximum velocity values occur in α=0.4 and Re=1000 and the concavity of the graph is less for α=0.8.  相似文献   

19.
20.
The secondary vortex structure of an impingement jet system is enhanced by V-ribs on both the impingement and target plates. Numerical and experimental investigations are conducted to study the flow field and heat transfer resulting from V-rib turbulators in an impingement cooling configuration. Three different cases are tested: V-ribs on both the impingement and target plates (V-rib), V-ribs only on the impingement plate (V-rib-impingement) and V-ribs only on the target plate (V-rib-target). The experiment is carried out on a 9 by 9 inline impingement array test facility. For the transient measurements, narrow band thermochromic liquid crystals (TLC) and thermocouples are applied to obtain the local heat transfer distribution. Pressure taps are used to measure the pressure loss. The numerical simulation is carried out with ANSYS CFX 14, using a steady state Reynolds-Averaged Navier-Stokes (RANS) approach and the Shear Stress Transport (SST) turbulence model. All studies are done for a Reynolds number range of 15,000 to 35,000. There is a good overall agreement between the experimental and numerical results for the cases studied. The detailed flow field from the numerical simulation is used to understand and complement the phenomena observed in the experiment. The evaluation of the flow field confirms that the V-ribs enhance the secondary flow structure in the impingement system and induce a positive heat flux ratio compared to the baseline case. Both experimental and numerical results show a Nusselt number increase for the V-rib-impingement and V-rib configuration, with a highest Nusselt number ratio of 1.16. Notice that the experiment cannot take the rib part into account due to the invalid 1D semi-infinite wall assumption there, while the CFD simulation allows for the consideration of heat transfer on the rib surface and thus complements the heat flux data on the target plate. Depending on the configuration, the CFD simulation shows a heat flux ratio of 1.06–1.34. The pressure loss of the system is comparable to the case with a smooth impingement plate and a smooth target plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号