首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The branched polymer melts are modeled respectively in this investigation by the existing XPP and PTT–XPP models, along with the proposed S-MDCPP (Single/Simplified Modified Double Convected Pom-Pom) model developed on the basis of the existing MDCPP model. A pressure stabilized mass equation is formulated with the finite increment calculus (FIC) process to restrain and further eliminate spurious oscillations of pressure field due to the incompressibility of fluids. The discrete elastic viscous stress splitting (DEVSS) technique is employed, in order to retain an elliptic contribution in the weak form of the momentum equation. An inconsistent streamline-upwind (SU) method is applied to spatially discretize the constitutive equations. The mass, momentum conservation and constitutive equations are discretized and solved by the iterative stabilized fractional step algorithm along with the Crank–Nicolson implicit difference scheme. Thus the finite elements with equal low-order interpolation approximations for velocity–pressure–stress variables can be devised to numerically simulate the viscoelastic contraction flows for branched LDPE melts. The influences of the three viscoelastic constitutive models and the branched arms at the end of the Pom-Pom molecule on the rheological behaviors occurring in this complex flow are discussed. The numerical results demonstrate that the proposed S-MDCPP model is capable of reproducing some properties similar to those predicted by the XPP model in high shear flow and, on the other hand, reproducing some properties similar to those predicted by the PTT–XPP model in high elongational flow. Furthermore, the proposed S-MDCPP model is capable of well identifying the macromolecule topological structures of branched polymer melts.  相似文献   

2.
A low-cost semi-analysis finite element technique, named the finite piece method (FPM) is presented in this article. It aims to solve three-dimensional (3D) viscoelastic slit flows. The viscoelastic stress of the fluid is modelled using an K-BKZ integral constitutive equation of the Wagner type. Picard iteration is used to solve non-linear equations. The FPM is tested on flow problems in both planar and contraction channels. The accuracy of the method is assessed by comparing flow distributions and pressure with results obtained by 3D finite element method (FEM). It shows that the solution accuracy is excellent and a substantial amount of computing time and memory requirement can be saved.  相似文献   

3.
The accuracy and consistency of a new cell‐vertex hybrid finite element/volume scheme are investigated for viscoelastic flows. Finite element (FE) discretization is employed for the momentum and continuity equation, with finite volume (FV) applied to the constitutive law for stress. Here, the interest is to explore the consequences of utilizing conventional cell‐vertex methodology for an Oldroyd‐B model and to demonstrate resulting drawbacks in the presence of complex source terms on structured and unstructured grids. Alternative strategies worthy of consideration are presented. It is demonstrated how high‐order accuracy may be achieved in steady state by respecting consistency in the formulation. Both FE and FV spatial discretizations are embedded in the scheme, with FV triangular sub‐cells referenced within parent triangular finite elements. Both model and complex flow problems are selected to quantify and assess accuracy, appealing to analysis and experimental validation. The test problem is that of steady sink flow, a pure extensional flow, which reflects some of the numerical difficulties involved in solving more generalized viscoelastic flows, where both source and flux terms may contribute equally to stress propagation. In addition, a complex transient filament‐stretching flow is chosen to compute the evolution of stress fields within liquid bridges. Shortcomings of the various stress upwinding schemes are discussed in this context, whilst dealing with such free‐surface type problems. Here, stress fluctuation distribution alone is advocated, and a Lax‐scheme is found to deliver accuracy and stability to the computational results, comparing well with the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Extensive experimental data on the birefringence in converging and diverging flows of a polymeric melt have been obtained. The birefringence and pressure drop measurements were carried out in working cells of planar geometry having different contraction angles and contraction ratios. For investigation of diverging or abrupt expansion flow, the direction of flow in the cells was reversed. The theoretical predictions are based upon the Leonov constitutive equation and a finite element scheme with streamwise integration.In contrast to Newtonian and second-order fluids, viscoelastic fluids at high shear rates show significant differences in pressure drop and birefringence (i.e. stresses) in converging and diverging flows. For a constant flow rate, the pressure drop is higher and the birefringence smaller in diverging flows than in converging flows. This difference increases with increasing flow rate. Further, for the same contraction ratio but different contraction angles, the birefringence maximum increases considerably with contraction angle. In addition, an increase in contraction ratio has the same effect.The viscoelastic constitutive equation of Leonov has been shown to describe all the above viscoelastic effects observed in the experiments. In general, a reasonable agreement between theory and experiment has been obtained, which shows the usefulness of the Leonov model in describing actual flows.  相似文献   

5.
A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method is based on the side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure–velocity–stress coupling. The log-conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix–logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281–285] has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. The resulting algebraic linear systems are solved using the FGMRES(m) Krylov iterative method with the restricted additive Schwarz preconditioner for the extra stress tensor and the geometric non-nested multilevel preconditioner for the Stokes system. The implementation of the preconditioned iterative solvers is based on the PETSc library for improving the efficiency of the parallel code. The present numerical algorithm is validated for the Kovasznay flow, the flow of an Oldroyd-B fluid past a confined circular cylinder in a channel and the three-dimensional flow of an Oldroyd-B fluid around a rigid sphere falling in a cylindrical tube. Parallel large-scale calculations are presented up to 523,094 quadrilateral elements in two-dimension and 1,190,376 hexahedral elements in three-dimension.  相似文献   

6.
We present a new algorithm for solving viscoelastic flows with a general constitutive equation. In our approach the hyperbolic constitutive equation is split such that the term for the convective transport of stress tensor is treated as a source. This allows the stress tensor at each grid point to be expressed mainly in terms of the velocity gradient tensor at the same point. Then, the set of six stress tensor components is found after inverting a six by six matrix at each grid point. Thus we call this algorithm the grid-by-grid inversion method. The convective transport of stress tensor in the constitutive equation, which has been treated as a source, is updated iteratively. The present algorithm can be combined with finite volume method, finite element method or the spectral methods. To corroborate the accuracy and robustness of the present algorithm we consider viscoelastic flow past a cylinder placed at the center between two plates, which has served as a benchmark problem. Also considered is the investigation of the pattern and strength of the secondary flows in the viscoelastic flows through a rectangular pipe. It is found that the present method yields accurate results even for large relaxation times.  相似文献   

7.
8.
A highly parallel time integration method is presented for calculating viscoelastic flows with the DEVSS-G/DG finite element discretization. The method is a synthesis of an operator splitting time integration method that decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. Both steps are performed in parallel. The discontinuous finite element discretization of the hyperbolic constitutive equation leads to highly-parallel element-by-element calculation of the stress at each time step. The Stokes-like problem is solved by using the BiCGStab Krylov iterative method implemented with the block complement and additive levels method (BCALM) preconditioner. The solution method is demonstrated for the calculation of two-dimensional (2D) flow of an Oldroyd-B fluid around an isolated cylinder confined between two parallel plates. These calculations use extremely fine finite elements and expose new features of the solution structure.  相似文献   

9.
The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used to analyse the flow. The novel features of the present method are the adoption of the velocity correction technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. This approach makes the computational scheme simple in algorithmic structure, which therefore implies that the present technique is capable of handling large-scale problems. The scheme is completed by the introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is pertinent to point out that the present numerical scheme, along with the proper boundary condition for pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of viscoelastic fluid through a channel with non-uniform cross-section.  相似文献   

10.
The planar contraction flow is a benchmark problem for the numerical investigation of viscoelastic flow. The mathematical model of three‐dimensional viscoelastic fluids flow is established and the numerical simulation of its planar contraction flow is conducted by using the penalty finite element method with a differential Phan‐Thien–Tanner constitutive model. The discrete elastic viscous split stress formulation in cooperating with the inconsistent streamline upwind scheme is employed to improve the computation stability. The distributions of velocity and stress obtained by simulation are compared with that of Quinzani's experimental results detected by laser–doppler velocimetry and flow‐induced birefringence technologies. It shows that the numerical results agree well with the experimental results. The numerical methods proposed in the study can be well used to predict complex flow patterns of viscoelastic fluids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A viscoelastic numerical scheme based on smoothed particle dynamics is presented. The concept goes a step beyond smoothed particle hydrodynamics (SPH) which is a grid-free Lagrangian method describing the flow by fluid-pseudo-particles. The relevant properties are interpolated directly on the resulting movable grid. In this work, the effect of viscoelasticity is incorporated into the ordinary conservation laws by a differential constitutive equation supplied for the stress tensor. In order to give confidence in the methodology we explicitly consider the non-stationary simple corotational Maxwell model in a channel geometry. Without further developments the scheme is applicable to ‘realistic’ models relevant for three-dimensional (3D) viscoelastic flows in complex geometries.  相似文献   

12.
李勇  卓琦又  何录武 《力学季刊》2019,40(1):106-114
基于BGK碰撞模型,通过在迁移方程中引入作用力项,建立了粘弹流体的轴对称格子Boltzmann模型.通过Chapman-Enskog展开,获得了准确的柱坐标下轴对称宏观流动方程.采用双分布函数对运动方程和本构方程进行迭代求解,模拟分析了粘弹流体管道流动,获得了流场中的速度和构型张量的分布,通过与解析解进行比较,验证了模型的准确性.研究了作为粘弹流体流动基准问题的收敛流动,对涡旋位置进行了定量分析,将回转长度的计算结果与有限体积法进行了比较,两种数值结果十分吻合.研究结果表明,模型能够准确表征粘弹流体的轴对称流动,具有较广阔的应用前景.  相似文献   

13.
A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.  相似文献   

14.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The parallelization of a fully implicit and stable finite element algorithm with relative low memory requirements for the accurate simulation of time-dependent, free-surface flows of multimode viscoelastic liquids is presented. It is an extension of our multi-stage sequential solution procedure which is based on the mixed finite element method for the velocity and pressure fields, an elliptic grid generator for the deformation of the mesh, and the discontinuous Galerkin method for the viscoelastic stresses [Dimakopoulos and Tsamopoulos [12], [14]]. Each one of the above subproblems is solved with the Newton–Rapshon technique according to its particular characteristics, while their coupling is achieved through Picard cycles. The physical domain is graphically partitioned into overlapping subdomains. In the process, two different kinds of parallel solvers are used for the solution of the distributed set of flow and mesh equations: a multifrontal, massively parallel direct one (MUMPS) and a hierarchical iterative parallel one (HIPS), while viscoelastic stress components are independently calculated within each finite element. The parallel algorithm retains all the advantages of its sequential predecessor, related with the robustness and the numerical stability for a wide range of levels of viscoelasticity. Moreover, irrespective of the deformation of the physical domain, the mesh partitioning remains invariant throughout the simulation. The solution of the constitutive equations, which constitutes the largest portion of the system of the governing, non-linear equations, is performed in a way that does not need any data exchange among the cluster's nodes. Finally, indicative results from the simulation of an extensionally thinning polymeric solution, demonstrating the efficiency of the algorithm are presented.  相似文献   

16.
A hybrid finite volume/element method is analysed through the computation of creeping flows of viscoelastic fluids in plane 4:1 sharp and rounded-corner contraction geometries. Simulations are presented for three models: a constant viscosity Oldroyd-B fluid, and Phan-Thien/Tanner (PTT) shear thinning fluids of exponential and linear approximation form. A Taylor–Galerkin/pressure-correction scheme is implemented as the base time-stepping framework. The momentum equations are solved by a finite element method, whilst the constitutive equations are solved by a finite volume approach. Mesh convergence is analysed via refinement around the contraction to capture boundary layers and flow structure. Pressure drop is shown to increase with flow rate for a fixed fluid. For the Oldroyd-B model, singular behaviour is reported in the main stress component as one approaches the corner in the rounded, as with the sharp geometry. Velocity components display an asymptotic trend with a positive slope. Higher values of Weissenberg numbers (We) are reached with these finite volume schemes compared to their finite element counterparts, attributing this to superior accuracy properties.  相似文献   

17.
This paper presents experimental results and numerical simulations for mono, blended and polydisperse polstryrenes of different molecular weights flowing within a slit geometry. Flow experiments were carried out on small (less than 10 g) quantities of polymer using a multi-pass rheometer and flow-induced birefringence images were obtained for well-defined flow boundary conditions. Experimental flow birefringence observations illustrate the similarities and differences in the flow behaviour between monodisperse and polydisperse polystyrene. For the case of monodisperse polystyrene a transition from “near-Newtonian” stress patterns for low molecular weight polystyrenes, to a highly unstable flow at high molecular weight was observed. Both blending and polydispersity enabled stable flows to be achieved at high flowrates.Experimental flow birefringence results and some pressure difference predictions were compared with numerical predictions. Two different computational approaches were followed, one using a viscoelastic integral K-BKZ/Wagner model within the finite element method solver Polyflow, and the other using the tube theory-based Pom-Pom constitutive equation and Lagrangian-Eulerian code flowSolve. Both numerical methods were able to capture certain experimental observations reasonably well in the stable flow regime, but were not able to predict the onset of the experimentally observed flow instabilities.  相似文献   

18.
In this paper, an incompressible smoothed particle hydrodynamics (SPH) method is presented to solve unsteady free-surface flows. Both Newtonian and viscoelastic fluids are considered. In the case of viscoelastic fluids, both the Maxwell and Oldroyd-B models are investigated. The proposed SPH method uses a Poisson pressure equation to satisfy the incompressibility constraints. The solution algorithm is an explicit predictor-corrector scheme and employs an adaptive smoothing length based on density variations. To alleviate the numerical difficulties encountered when fluid is highly stretched, an artificial stress term is incorporated into the momentum equation which reduces the risk of unrealistic fractures in the material. Two challenging test cases, the impacting drop and the jet buckling problems, are solved to demonstrate the capability of the proposed scheme in handling viscoelastic flows with complex free surfaces. The jet buckling test case was solved for a wide range of Weissenberg numbers. It was shown that in all cases the method is stable and fairly accurate and agrees well with the available data.  相似文献   

19.
The finite element method is used to find the elastic strain (and thus the stress) for given velocity fields of the Leonov model fluid. With a simple linearization technique and the Galerkin formulation, the quasi-linear coupled first-order hyperbolic differential equations together with a non-linear equality constraint are solved over the entire domain based on a weighted residual scheme. The proposed numerical scheme has yielded efficient and accurate convective integrations for both the planar channel and the diverging radial flows for the Leonov model fluid. Only the strain in the inflow plane is required to be prescribed as the boundary conditions. In application, it can be conveniently incorporated in an existing finite element algorithm to simulate the Leonov viscoelastic fluid flow with more complex geometry in which the velocity field is not known a priori and an iterative procedure is needed.  相似文献   

20.
The effect of accumulation of reversible strains on the pressure head is analyzed theoretically for elastic and viscoelastic liquid flow from convergent channels. It is shown that, depending on the rheological features of the liquids, the pressure head can both increase and decrease as compared with the pressure determined by the Bernoulli formula. In particular, a situation in which a liquid flows out without any pressure head applied (paradox of self-outflow) is possible within the framework of the model. Transition to different viscoelastic liquid flow regimes as a function of the constitutive parameters is considered with reference to a channel with a sharp bottleneck (abrupt decrease in the cross-section).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号