首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
泥沙颗粒受到的拖曳力是泥沙运动的主要驱动力,而当前应用于计算流体力学-离散颗粒法(CFD-DPM)耦合模型进行水沙运动模拟的泥沙颗粒拖曳力公式均没有考虑明渠流底床边壁作用的影响。求解不可压缩Navier-Stokes方程,对明渠层流不同雷诺数条件下床面附近不同高度处颗粒所受拖曳力进行了模拟,根据模拟结果变化规律,提出了综合考虑床面和水流惯性对标准拖曳力影响的修正拖曳力计算公式。与常用的单颗粒标准拖曳力公式和考虑遮蔽效应的多颗粒拖曳力公式相比,采用本文修正公式得到的水沙作用力更接近高精度数值解,应用于CFD-DPM输沙模拟获得的输沙结果与输沙率公式结果一致,应用分析表明输沙模拟应当采用粗糙底床边界。  相似文献   

4.
In‐depth‐averaged and cross‐section‐averaged morphodynamic models, based on explicit time integration, it may happen that the computed bed level becomes lower than the top level of a non‐erodible layer (e.g. concrete, bedrock or armoured layer). This is a standard pitfall, which has been addressed in different ways. In this paper, we present an original approach for avoiding computation of non‐physical bed levels, using an iterative procedure to correct the outward sediment fluxes. The procedure is shown to be computationally efficient while it achieves a high accuracy in terms of mass conservation. We compare our original approach with the existing Struiksma's method and with a reformulation of the problem in terms of mathematical optimization of a linear or nonlinear objective function under linear constraints. The new procedure has been incorporated into an existing finite volume morphodynamic model. It has been validated with several 1D benchmarks leading to configurations with sediment transport over non‐erodible bottom. The computation time has been verified not to increase by more than 15% compared with runs without non‐erodible bottom. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We present a finite element residual‐based variational multiscale formulation applied to the numerical simulation of particle‐laden flows. We employ a Eulerian–Eulerian framework to describe the flows in which the mathematical model results from the incompressible Navier–Stokes equation combined with an advection–diffusion transport equation. Special boundary conditions at the bottom are introduced to take into account sediments deposition. Computational experiments are organized in two examples. The first example deals with the well‐known gravity current benchmark, the lock‐exchange configuration. The second also employs for the current initiation the lock configuration, but the sediment particles are endowed with a deposition velocity and are allowed to leave the domain in the moment they reach the bottom. This is intended to mimic, partially, as the bed morphology is not allowed to change, the deposition process, in which sediment deposits are no longer carried by the flow. The spatial pattern of the deposition and its correlation with flow structures are the main focus of this analysis. Numerical experiments have shown that the present formulation captures most of the relevant turbulent flow features with reasonable accuracy, when compared with highly resolved numerical simulations and experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A well‐balanced total variation diminishing–McCormack scheme is used to simulate the fast evolving flow on a mobile coarse sediments bed. The scheme is chosen because of its shock capturing capabilities and its relative simplicity, which allow different sediment transport formulae to be slotted in easily. A typical example of the kind of flows treated here is bore‐driven wave run‐up. The analogy with a dam‐break on a mobile bed is used here to analyze the performance of the model. The model solves the nonlinear shallow water equations coupled with the Exner sediment balance equation for the mobile bed. Quasi‐analytical solutions to this problem for different expressions for instantaneous sediment discharge formulae are used to test the performance of the scheme. Together with the existing solution for the Grass formula, a further solution is obtained for a different formula. Numerical tests were also carried out for a further formula that is an industry standard. The agreement of the results with the solutions is very good and consistent results were obtained for all the formulae tested. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We discuss the application of a finite volume method to morphodynamic models on unstructured triangular meshes. The model is based on coupling the shallow water equations for the hydrodynamics with a sediment transport equation for the morphodynamics. The finite volume method is formulated for the quasi‐steady approach and the coupled approach. In the first approach, the steady hydrodynamic state is calculated first and the corresponding water velocity is used in the sediment transport equation to be solved subsequently. The second approach solves the coupled hydrodynamics and sediment transport system within the same time step. The gradient fluxes are discretized using a modified Roe's scheme incorporating the sign of the Jacobian matrix in the morphodynamic system. A well‐balanced discretization is used for the treatment of source terms. We also describe an adaptive procedure in the finite volume method by monitoring the bed–load in the computational domain during its transport process. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bed gradients that may form in the approximate solution. Numerical results are shown for a test problem in the evolution of an initially hump‐shaped bed in a squared channel. For the considered morphodynamical regimes, the obtained results point out that the coupled approach performs better than the quasi‐steady approach only when the bed–load rapidly interacts with the hydrodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
细颗粒泥沙净冲刷和输移的大涡模拟研究   总被引:1,自引:1,他引:0  
在传统水沙输移数值模拟研究中一般采用雷诺时均模拟技术(Reynolds-averaged simulation,RANS).与RANS相比,大涡模拟技术(large eddy simulation,LES)能够更加精确反映细部流动结构,计算机的发展使得采用LES探讨水流和泥沙运动规律成为可能.本文尝试给出净冲刷条件下悬沙计算的边界条件,采用动态亚格子模式对循环槽道和长槽道中的水流运动和泥沙输移进行了三维大涡模拟研究.利用直接数值模拟(direct numerical simulation,DNS)结果对LES模型进行了率定,计算结果符合良好,在此基础上初步探讨了泥沙浓度、湍动强度和湍动通量等的分布特征.结果表明,净冲刷条件下输沙平衡时泥沙浓度符合Rouse公式分布,单向流动中泥沙浓度沿着流向逐渐增大.泥沙浓度湍动强度和湍动通量都在近底部达到最大值,沿着垂向迅速减小.湍动黏性系数和扩散系数基本上在水深中间处达到最大.湍动Schmidt数沿着水深方向不是常数,在近底部和自由水面附近较大,在水深中间处较小.  相似文献   

9.
A fully coupled two‐dimensional subcritical and/or supercritical, viscous, free‐surface flow numerical model is developed to calculate bed variations in alluvial channels. Vertically averaged free‐surface flow equations in conjunction with sediment transport equation are numerically solved using an explicit finite‐volume scheme using transformed grid in order to handle complex geometry fluvial problems. Convergence is accelerated with use of a multi‐grid technique. Firstly the capabilities of the proposed method are demonstrated by analyzing subcritical and supercritical hydrodynamic flows. Thereafter, an analysis of one‐ and two‐dimensional flows is performed referring to aggradation and scouring. For all reported test cases the computed results compare reasonably well with measurements as well as with other numerical solutions. The method is stable, reliable and accurate handling a variety of sediment transport equations with rapid changes of sediment transport at the boundaries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper introduces an improved formula for the bed‐shear stress by applying the vorticity effect and its application in a 3D flow and sediment model to estimate scouring around bridge piers. Up to now, the sediment transport formulae used for computing pier scour were developed based on the general scouring in unobstructed flow. The capability for numerical models to predict local scour around bridge piers was severely restricted by the sediment transport formulae. The new formula introduced in this paper can take into account vortices that affect the local scour process by adding some terms into the classic bed‐shear stress equation. The 3D numerical model system used in this study consists of three modules: (a) an unsteady hydrodynamic module; (b) a sediment transport module; and (c) a Fation module. The hydrodynamic module is based on the 3D RANS equations. The sediment transport module is comprised of semi empirical models of suspended load and non‐equilibrium bed load. The bed‐deformation module is based on the mass balance for sediment. The model was used to simulate pier scour in tree different test cases: (1) a circular pier; (2) a square pier; and (3) a rectangular pier, by applying the ordinary sediment equation and the newly introduced sediment equation. Results of both numerical simulations were compared against laboratory measured data and also in case 1 with result of Olsen and Melaaen (J. Hydraul. Eng. 1993; 119 (9):1048–1054). Comparisons show that the new sediment formula could predict the scour more accurately than the ordinary one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents a first‐order HLLC (Harten‐Lax‐Van Leer with contact discontinuities) scheme to solve the Saint‐Venant shallow‐water equations, including morphological evolution of the bed by erosion and deposition of sediments. The Exner equation is used to model the morphological evolution of the bed, while a closure equation is needed to evaluate the rate of sediment transport. The system of Saint‐Venant–Exner equations is solved in a fully coupled way using a finite‐volume technique and a HLLC solver for the fluxes, with a novel wave‐speed estimator adapted to the Exner equation. Wave speeds are usually derived by computing the eigenvalues of the full system, which is highly time‐consuming when no analytical expression is available. In this paper, an eigenvalue analysis of the full system is conducted, leading to simple but still accurate wave‐speed estimators. The new numerical scheme is then tested in three different situations: (1) a circular dam‐break flow over movable bed, (2) an one‐dimensional bed aggradation problem simulated on a 2D unstructured mesh and (3) the case of a dam‐break flow in an erodible channel with a sudden enlargement, for which experimental measurements are available. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
IntroductionThoughatransport_diffusion (orLagrange_Galerkin)method ,whichisalsocalledachar_acteristicsmethod ,isanoldone[1]andhasbeenextensivelyappliedtodealingwithPDEswithdiffusiontermand/orconvection ,ithadnotbeenmixedthefiniteelementmethodstotreatsuccessfullytheconvergenceofnumericalsolutionfortheNavier_Stokesequationsuntiltheearly198 0s[2 ].Intheearly 1 990s,Berm挷dezetal.[3]appliedthismethodtodealingwiththeshallowwaterequationsonlyincludingthecurrentandthedepthofwaterandonlyderi…  相似文献   

14.
The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.  相似文献   

15.
It is shown that the sediment transport rate is uniquely determined by the normal and tangential stresses and the slope of the bottom surface. The dependence of the mass flow rate of sediments transported over an uneven eroded bottom on these three characteristics was obtained analytically. A formula for the sediment transport rate that generalizes a number of well-known formulas of sediment transport was derived within the framework of a two-velocity model.  相似文献   

16.
A numerical model of pollutant transport acted by water waves on a shallow‐water mild‐slope beach is established in this study. The numerical model is combined with a wave propagation model, a multiple wave‐breaking model, a wave‐induced current model and a pollutant convection–dispersion model. The wave propagation model is based on the higher‐order approximation of parabolic mild‐slope equation which can be used to simulate the wave refraction, diffraction and breaking in a large area of near‐shore zone combined with the wave‐breaking model. The wave‐induced current model is established using the concept of the radiation stress and considering the effect of bottom resistance caused by waves. The numerical model is verified by laboratory experiment results of regular and irregular waves over two mild beaches with different slopes. The numerical results agree well with experimental results. The numerical model has been applied in the near‐shore zone of Bohai bay in China. It is concluded that pollutant transport parallel to the shoreline due to the action of waves, which will induce serious pollution on the beach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
应用平面二维悬沙数学模型对方柱尾流区的泥沙输运及床面调整进行了数值模拟,并对重要物理参数做了分析说明。数值计算采用时间分裂一全隐式有限差分格式,流场的计算基于沿水深平均的RANS方程。通过系统的数值模拟,揭示了不同来流情况下,方柱尾流区的流态变化,及与之相应的床面变化规律,并对不同流态下的泥沙运动作了分析。计算结果表明在方柱尾流区,不同的流场流态对尾流区的床面调整有明显影响。流场较弱的情况下,尾流区中湍动强度相应较弱,此时悬浮泥沙由于流速减小而普遍落淤,床面应力的减小也致使床面冲刷量减小。随着流场强度的逐渐增大,尾流区中湍动强度相应增强,床面应力增大,同时湍流的强烈交换作用增强了对泥沙的输运作用,床面变化不再是简单的淤积状态,部分区域出现了冲刷。  相似文献   

18.
河口混合与泥沙输运   总被引:8,自引:1,他引:7  
周济福  李家春 《力学学报》2000,32(5):523-531
根据振荡边界层理论和波流分解方法,导出了河口往复水流的流速垂向分布廓线,据此建立了河口垂向准二维水流、盐度、泥沙运动模型。对泥沙输运,完整地考虑了其对流、扩散、起动和沉降的动力学过程。模拟结果与实测资料进行了对比。应用该模型研究河口泥沙输运,分析了河口混合对泥沙输运的影响及最大浑浊带的时空变化规律。  相似文献   

19.
In developing a 3D or laterally averaged 2D model for free‐surface flows using the finite difference method, the water depth is generally discretized either with the z‐co‐ordinate (z‐levels) or a transformed co‐ordinate (e.g. the so‐called σ‐co‐ordinate or σ‐levels). In a z‐level model, the water depth is discretized without any transformation, while in a σ‐level model, the water depth is discretized after a so‐called σ‐transformation that converts the water column to a unit, so that the free surface will be 0 (or 1) and the bottom will be ‐1 (or 0) in the stretched co‐ordinate system. Both discretization methods have their own advantages and drawbacks. It is generally not conclusive that one discretization method always works better than the other. The biggest problem for the z‐level model normally stems from the fact that it cannot fit the topography properly, while a σ‐level model does not have this kind of a topography‐fitting problem. To solve the topography‐fitting problem in a laterally averaged, 2D model using z‐levels, a piecewise linear bottom is proposed in this paper. Since the resulting computational cells are not necessarily rectangular looking at the xz plane, flux‐based finite difference equations are used in the model to solve the governing equations. In addition to the piecewise linear bottom, the model can also be run with full cells or partial cells (both full cell and partial cell options yield a staircase bottom that does not fit the real bottom topography). Two frictionless wave cases were chosen to evaluate the responses of the model to different treatments of the topography. One wave case is a boundary value problem, while the other is an initial value problem. To verify that the piecewise linear bottom does not cause increased diffusions for areas with steep bottom slopes, a barotropic case in a symmetric triangular basin was tested. The model was also applied to a real estuary using various topography treatments. The model results demonstrate that fitting the topography is important for the initial value problem. For the boundary value problem, topography‐fitting may not be very critical if the vertical spacing is appropriate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
陈金峰  张金龙  杨文武  董宇红 《力学学报》2022,54(10):2773-2783
潜流带中污染物质交换与输运特性是影响水资源环境的重要问题之一. 本文对底部为高渗透沉积层的三维槽道振荡流高Schmidt数传质问题进行了大涡模拟研究. 采用动力学亚格子模型来封闭滤波后的三维不可压缩Navier-Stokes方程以及污染物输运方程, 同时采用修正的Darcy-Brinkman-Forcheimer模型来描述沉淀有锌离子污染溶质的可渗透沉积层. 通过对沉积层内外流场和浓度场的统计特性以及瞬态结构的分析, 探究了上覆水体中振荡流驱动作用对污染物输运的动力学影响以及扩散率随振荡周期和振荡角的变化规律. 研究结果表明, 浓度通量中的湍流浓度分量在垂向物质交换中起主导作用, 流向、展向速度, 湍流强度和污染物浓度的波动跟随振荡驱动力呈现准周期变化, 同时发现沉积层?水交界面处的湍流浓度通量与法向湍流强度两者之间的变化具有明确的相关性. 并且在较大振荡角和低频振荡的情况下, 沉积层?水交界面处的有效扩散率增大, 这主要是来自于沉积层?水交界面处流体的猝发行为有效促进了湍流混合和物质交换, 进而增强了污染物的垂向输运.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号