首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
本文中基于弹流润滑分析和次表面应力建立了渐开线直齿轮多轴疲劳寿命计算模型.相对于传统的单轴疲劳模型,考虑了齿轮固定点的应力历史和材料属性对疲劳寿命的影响,并可以得到齿轮在完整啮合过程中的寿命分布.首先建立齿轮的有限长弹流计算模型,得到齿轮啮合过程中的油膜压力和油膜厚度,再根据油膜压力计算出次表面的应力分布;通过分析齿轮计算区域随啮合过程移动的关系,得到固定点的应力历史,再根据基于应力历史的多轴疲劳寿命模型对齿轮的完整啮合过程进行寿命预估.计算分析了不同粗糙度幅值对轮齿各点寿命大小和分布的影响.研究表明:齿面粗糙度对疲劳寿命的影响显著,随着粗糙度幅值的增大,表层下最大应力向齿面移动,导致低疲劳寿命区向齿面发展且逐步扩展到整个单齿啮合区;而表面粗糙度降低到一定程度则对疲劳寿命的影响变得不明显.  相似文献   

2.
大部分工程实际粗糙表面符合非高斯分布,并对齿轮接触副润滑特性有重要影响.将渐开线齿轮啮合过程中齿面接触等效为三维无限长线接触,建立了一个可分析直齿轮和斜齿轮的混合弹流润滑计算模型;采用基于快速傅里叶变换的数值仿真方法生成给定参数的非高斯粗糙表面;运用该模型对直齿轮和斜齿轮啮合过程进行分析,求得不同表面粗糙度特征齿轮在各个啮合点的油膜厚度、接触区载荷以及接触区比例的情况.结果表明:对于标准差相等的非高斯粗糙表面,偏度值对齿轮润滑状况的影响与工况紧密相关,在润滑良好的条件下,偏度值越小润滑状况越优;润滑恶劣的条件下,偏度值越大润滑状况越优;而在各种工况下,峰度值对齿轮润滑状况的影响都表现出峰度值越大润滑状况越优的特点.  相似文献   

3.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

4.
在齿轮传动系统中,齿轮啮合刚度对振动、冲击、齿轮动力学特性分析以及接触应力计算有重要影响. 根据双渐开线齿轮齿廓啮合特点,基于弹流润滑理论,建立了双渐开线齿轮传动油膜刚度计算模型,研究双渐开线齿轮传动油膜刚度变化规律. 采用对比法分析了双渐开线齿轮与同参数普通渐开线齿轮传动油膜刚度差异,并研究双渐开线齿轮齿廓参数和工况条件对油膜刚度的影响. 分析表明:双渐开线齿轮由于轮齿分阶的影响,与同参数渐开线齿轮传动油膜刚度相比有较大差异;双渐开线齿轮传动油膜刚度随齿腰高度系数的增大而减小,齿腰切向变位系数变化时,油膜刚度基本不变;工况条件变化时,双渐开线齿轮传动油膜刚度随转速的增大而减小,随载荷增量因子的增大而增大.   相似文献   

5.
渐开线斜齿轮非稳态弹流润滑数值模拟研究   总被引:13,自引:10,他引:3  
建立了渐开线斜齿轮啮合的弹流润滑计算模型,将斜齿圆柱齿轮啮合的齿面接触等效为有限长线接触的弹流润滑问题.考虑斜齿轮啮合的实际因素,将斜齿轮啮合过程中的等效曲率半径和齿面载荷的变化反映到弹流润滑计算模型中,应用统一Reynolds方程方法求得轮齿在1个完整啮合周期内的瞬时弹流润滑数值解.结果表明:斜齿轮啮合线上各点处的膜厚、压力均有较大不同,各接触点处的油膜厚度受综合曲率半径的影响较大;斜齿轮传动非稳态效应相对较弱;小齿轮齿根附近和节点位置处润滑状态较差;适当增大压力角可以改善齿轮的润滑.  相似文献   

6.
油膜弹流润滑在齿轮传动中有着非常重要的作用,为得到油膜润滑作用下的齿轮啮合响应,基于ABAQUS/STANDARD的静态计算结果,首先提取了仅有齿轮啮合的齿面接触刚度,再结合油膜刚度得到了齿轮和油膜的综合接触刚度,并以此综合刚度作为接触属性关系进行齿轮的静动态运动响应计算。此外,对齿轮啮合时出现的接触区域(接触斑)不连续现象也进行了分析。最终结果表明考虑油膜润滑作用时,齿轮面的最大接触应力比无润滑作用时下降了30%左右,而齿根处最大拉应力则下降了6.14%。本方法为齿轮动力学分析和齿轮的优化设计提供了基础条件。  相似文献   

7.
为了解决直齿面齿轮滑动摩擦啮合效率的问题,基于弹性流体动力润滑理论,提出了一种计算直齿面齿轮啮合效率的方法.首先,运用轮齿接触分析(TCA)和轮齿承载接触分析技术(LTCA)对直齿面齿轮承载啮合过程进行数值仿真;其次,运用非牛顿准稳态热弹流理论建立滑动摩擦系数的计算模型,从而建立直齿面齿轮啮合效率的计算模型,最后分析了输入扭矩、转速等对啮合效率的影响.结果表明:滑动摩擦系数是影响齿轮啮合效率的重要因素;齿面不同位置滑动摩擦系数也不相同;滑动摩擦系数受输入转速、输入扭矩的影响.该方法为直齿面齿轮的进一步优化计算提供一定的理论依据.  相似文献   

8.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

9.
基于载荷分担理论的渐开线斜齿轮热混合弹流润滑分析   总被引:5,自引:4,他引:1  
沿接触线把斜齿轮分成许多小薄片,每一薄片看成具有当量角速度的直齿轮,根据欧拉方程得到任一接触点处的曲率半径和表面速度.然后基于载荷分担、弹流润滑和粗糙线接触理论,建立了考虑表面粗糙度的斜齿轮传动混合热弹流润滑模型.研究了斜齿轮传动稳态载荷分布下牛顿流体和Carreau流体时的润滑特性.结果表明:牛顿流体和Carreau非牛顿流体模型下,中心油膜厚度、油膜承载比例、油膜温升随时间和接触线的变化规律相同.牛顿流体下的摩擦系数较工程实际偏大.Carreau非牛顿流体模型下摩擦系数和工程实际相符,其随接触线啮合位置的变化规律与油膜厚度正好相反.  相似文献   

10.
斜齿轮弹流润滑下的接触疲劳寿命计算   总被引:6,自引:6,他引:0  
经典齿轮接触疲劳强度理论是基于光滑表面赫兹干接触理论,而实际齿面具有粗糙度,且啮合轮齿多数处于混合润滑状态.本文基于齿轮润滑接触分析建立了渐开线斜齿轮的接触疲劳寿命计算模型.模型由齿轮润滑接触分析模型和基于次表面应力分布的疲劳寿命模型组成.首先将斜齿圆柱齿轮一对齿的瞬时啮合等效为两反向圆锥的接触问题,建立了齿轮的有限长弹流润滑计算模型,考虑了齿轮啮合周期内瞬时载荷、接触线长、卷吸速度等因素的影响,基于统一雷诺方程方法求得啮合齿对间的润滑压力和油膜厚度分布;在此基础上,计算轮齿接触区次表面的米歇斯应力分布,根据Zaretsky接触疲劳寿命计算模型,对齿轮组的接触疲劳寿命进行模拟预测.针对不同工况参数下接触疲劳寿命计算表明:润滑油黏度、轮齿表面粗糙度等因素对齿面接触疲劳寿命均有显著的影响.  相似文献   

11.
活塞环组摩擦及润滑特性的综合分析   总被引:7,自引:2,他引:7  
基于二维平均流量模型和微凸体接触模型,提出了一种分析内燃机活塞环组润滑的模型,同时还对油膜厚度进行了实测,理论值与实测值具有良好的一致性,并且运用这种模型求出了活塞环-缸套之间油膜厚度的三维分布,发现油膜厚度沿圆周方向存在不均匀性.在分析中还考虑了贫油的影响,而且首次探讨了活塞系统的二阶运动对活塞环组润滑特性的影响,给出了不同结构下活塞系统的摩擦力和摩擦功耗.  相似文献   

12.
流体动力润滑油膜破裂的热力学失稳机理   总被引:1,自引:0,他引:1  
分析了流体动力学润滑过程中的热量传递及对润滑剂流变特性的影响,得出了流体动力润滑油膜发生热力学失稳的条件,建立了描述润滑剂温度非牛顿效应的本构方程数值计算结果表明,由于温度的影响,流体动力润滑油膜存在最大承载能力;在临界状态,微小的扰动将会引起油膜失稳而丧失承载能力。初步揭示了流体动力学力润滑膜破失效的内在力学机制。  相似文献   

13.
极端工况双矩形腔静压推力轴承动态特性   总被引:1,自引:0,他引:1  
静压推力轴承动态特性受润滑油黏度、油膜厚度和油腔面积等因素影响, 极端工况运行过程中经常承受阶跃载荷或正弦载荷作用, 突加载荷将导致静压推力轴承动态特性改变, 表现为轴承的抗冲击能力和恢复平衡所需时间的变化. 为获得高速重载微间隙极端工况条件下双矩形腔静压推力轴承动态特性, 分别在不同油膜厚度、不同润滑油黏度以及不同油腔尺寸条件下对双矩形腔静压推力轴承的动态性能进行理论分析, 探讨了阶跃载荷作用下润滑油黏度、油膜厚度和油腔面积对轴承动态性能的影响, 揭示了油膜动态变化规律, 探究了正弦载荷作用下双矩形腔静压推力轴承的稳定性. 结果表明: 润滑油黏度、油膜厚度和油腔尺寸变化对其动态性能有很大的影响. 润滑油黏度越大、油膜厚度越小、油腔面积越大突加载荷作用下润滑油膜抵抗冲击的能力越强, 旋转工作台受到突加外力作用下恢复至平衡状态所用时间越短. 双矩形腔静压推力轴承油膜具有较大的阻尼系数, 轴承具有极强的抵抗正弦加载作用的能力   相似文献   

14.
利用面接触油膜润滑测量系统,研究了条状润湿表面对有限量供油条件下入口区供油分布及润滑油膜厚度的影响. 对玻璃盘润滑轨道两侧进行疏油化处理,形成中央条状润湿区域,在有限量供油条件下测量不同速度下的油膜厚度. 结果表明在表面力驱动下,润滑油向中央条状亲油区域集中,改善了入口区供油,促进了限量供油条件下的油膜形成. 相对油膜厚度随速度的增加呈“S”型变化,同时研究了润滑油黏度及供油量等工作参数对条状润湿轨道作用的影响.   相似文献   

15.
利用激光激发荧光技术对球-盘弹流接触区附近以及自由表面上的润滑油分布进行了试验观察,探究了离心力作用下接触区附近以及自由表面上润滑油分布的变化规律. 结果表明:随着速度增大,内外两侧油池及自由表面上的油量分布均有所减少,其中外侧油池及自由表面上外侧油带的变化较明显;在一定工况条件下,外侧油池的大小存在极限,因此速度较大时外侧油池宽度对供油量变化不显著,而该极限由离心力作用和毛细力作用共同决定;在离心力作用下,自由表面上的油带有向外侧铺展的趋势,而接触区周围的油池分布对自由表面上的油带分布起决定作用.   相似文献   

16.
在自制的新型膜厚测量仪上,测量4010航空油在不同接触压力、温度和卷吸速度下的干涉图像,分析接触区的润滑特性。结果表明:在低温高速区主要表现为弹流润滑,中心膜厚与接触压力呈负相关;而在低温低速、高温区主要表现为薄膜润滑,中心膜厚受接触压力的影响较小。在弹流润滑区内高接触压力下油膜形状呈平坦状分布,而薄膜润滑区内油膜形状总体上比较平滑。随着载荷的增加,弹流润滑区内由Hamrock-Dowson理论算得的膜厚值和实测值逐渐偏离,理论公式中卷吸速度和载荷的指数需要调整;而薄膜润滑区的膜厚值基本上保持平稳。  相似文献   

17.
椭圆接触弹性流体动力润滑的供油条件分析   总被引:4,自引:1,他引:4  
通过数值求解研究了椭圆接触弹流润滑的供油条件,分析了供油油膜厚度对乏油润滑中心膜厚和最小膜厚的影响,以及中心膜厚和最小膜厚与润滑油膜压力区形成位置的关系.结果表明:当供油油膜厚度较小时,中心膜厚和最小膜厚很小,压力区形成位置距Hertz接触区很近,处于严重乏油状态;当供油油膜的厚度达到一定数值时,中心膜厚和最小膜厚基本不变,多余的润滑油几乎不能进入接触间隙,即达到准充分供油状态;当供油油膜厚度继续增加时,乏油区最终消失,达到充分供油或过量供油状态.  相似文献   

18.
进口润滑条件对活塞环-缸套摩擦副润滑性能的影响   总被引:1,自引:0,他引:1  
目前内燃机活塞环-缸套摩擦副润滑分析中,活塞环与缸套之间的润滑状态一般假设为充分润滑或固定状况的贫油润滑,不是通过对实际润滑油膜形成情况的分析确定.本文中以一多缸四行程内燃机为研究对象,基于润滑油流量以及控制体体积变化方程,建立活塞环-缸套间润滑油的流动模型,进行了不同进口处润滑油膜供给量对活塞环-缸套摩擦副润滑特性的影响分析.结果表明:活塞环进口处的润滑条件对活塞环-缸套摩擦副的润滑性能有显著影响;进口处润滑油供给量增加,活塞环-缸套摩擦副的最小油膜厚度增加,最大油膜压力、微凸体作用力、摩擦力和功耗均相应减小;进口处供给油膜厚度较小的情况下,增加油膜供给厚度可以明显改善活塞环-缸套摩擦副的润滑性能.  相似文献   

19.
为探究齿轮磁流体润滑与动力学的耦合效应,考虑外磁场及时变啮合刚度的激励作用,建立齿轮磁流体润滑模型与动力学模型,分析磁感应强度对磁流体黏度、油膜刚度、动载荷分布以及润滑特性的影响. 研究结果表明:适当增大磁感应强度并使磁流体中的磁性颗粒达到其饱和磁化强度,可以减小动态传递误差、齿轮副振动速度以及动载荷,改善啮入冲击和换齿冲击;较大的磁感应强度可以降低油膜温升,增大油膜厚度并使油膜压力和油膜厚度的振幅减小且加快其趋于稳定的速度,在改善润滑效果的同时并在一定程度上抑制齿轮系统振动和噪声的产生.   相似文献   

20.
研究了可倾瓦推力轴承在名义转速分别为2000r/min和4000r/min下,当载荷突然变化时推力轴在油膜温度和油膜厚度的瞬态变化规律。实验结果表明:当载荷突然增大时,油膜温度以及进油边温度上升,油膜厚度减小;随着载荷变化幅度的增大,温度上升幅度也增大,油膜厚度进一步减小;在载荷变化相同的情况下,相同时间间隔内转速高时油膜温度增大幅度比转速低时要大,而油膜厚度减小幅度比低转速下小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号