首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于新修正偶应力理论建立了一个Reddy型复合材料层合板稳定性模型。该理论中曲率张量不对称,而偶应力矩张量对称。Reddy型层合板模型能够满足横向剪切应力为0的自由表面条件,而且横向剪切为二次函数,避免了常剪力一阶理论需要引入的剪力修正系数。为了便于工程应用,通过虚功原理推导了只含纤维材料尺度参数正交铺设的Reddy型层合板偶应力模型的稳定性方程,并以微尺度正交铺设四边简支层合方板为例,分析了不同铺设角和轴向载荷作用时临界载荷的细观尺度效应,并且与一阶剪切变形和Kirchhoff板理论结果对比。结果表明,本文建立的新修正偶应力Reddy型层合板模型更适合分析较厚的复合材料层合板稳定性的尺度效应。  相似文献   

2.
本文基于各向异性修正偶应力理论建立了只含一个尺度参数的Reddy型复合材料层合板的自由振动模型。同见诸于文献的细观尺度Kirchhoff薄板偶应力模型相比,本文提出的新模型能够更精确的预测细观尺度下的中、厚层合板的自振频率。基于Hamilton原理推导了细观尺度下Reddy型复合材料层合板的运动微分方程以及边界条件,并以正交铺设的四边简支复合材料层合方板为例进行了解析求解,分析了尺度参数对自振频率的影响并对比了Kirchhoff、Mindlin和Reddy等三种板模型计算结果的异同。算例结果表明本文所给出的模型能够捕捉到复合材料层合板自由振动问题的尺度效应。另外,在细观尺度下Kirchhoff板模型所预测的自振频率相对于Mindlin板模型和Reddy板模型总是过高,且越接近厚板三者的差别就越大,这与经典理论中三种板模型的对比情况是一致的。  相似文献   

3.
基于新的各向异性修正偶应力理论提出一个Mindlin复合材料层合板稳定性模型。该理论包含纤维和基体两个不同的材料长度尺度参数。不同于忽略横向剪切应力的修正偶应力Kirchhoff薄板理论,Mindlin层合板考虑横向剪切变形引入两个转角变量。进一步建立了只含一个材料细观参数的偶应力Mindlin层合板工程理论的稳定性模型。计算了正交铺设简支方板Mindlin层合板的临界载荷。计算结果表明该模型可以用于分析细观尺度层合板稳定性的尺寸效应。  相似文献   

4.
5.
This paper describes a new procedure for the homogenization of orthotropic 3D periodic plates. The theory of Caillerie [Caillerie, D., 1984. Thin elastic and periodic plates. Math. Method Appl. Sci., 6, 159–191.] – which leads to a homogeneous Love–Kirchhoff model – is extended in order to take into account the shear effects for thick plates. A homogenized Reissner–Mindlin plate model is proposed. Hence, the determination of the shear constants requires the resolution of an auxiliary 3D boundary value problem on the unit cell that generates the periodic plate. This homogenization procedure is then applied to periodic brickwork panels.A Love–Kirchhoff plate model for linear elastic periodic brickwork has been already proposed by Cecchi and Sab [Cecchi, A., Sab, K., 2002b. Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A-Solids 21, 249–268 ; Cecchi, A., Sab, K., 2006. Corrigendum to A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork [Int. J. Solids Struct., vol. 41/9–10, pp. 2259–2276], Int. J. Solids Struct., vol. 43/2, pp. 390–392.]. The identification of a Reissner–Mindlin homogenized plate model for infinitely rigid blocks connected by elastic interfaces (the mortar thin joints) has been also developed by the authors Cecchi and Sab [Cecchi A., Sab K., 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. Int. J. Solids Struct. 41/9–10, 2259–2276.]. In that case, the identification between the 3D block discrete model and the 2D plate model is based on an identification at the order 1 in the rigid body displacement and at the order 0 in the rigid body rotation.In the present paper, the new identification procedure is implemented taking into account the shear effect when the blocks are deformable bodies. It is proved that the proposed procedure is consistent with the one already used by the authors for rigid blocks. Besides, an analytical approximation for the homogenized shear constants is derived. A finite elements model is then used to evaluate the exact shear homogenized constants and to compare them with the approximated one. Excellent agreement is found. Finally, a structural experimentation is carried out in the case of masonry panel under cylindrical bending conditions. Here, the full 3D finite elements heterogeneous model is compared to the corresponding 2D Reissner–Mindlin and Love–Kirchhoff plate models so as to study the discrepancy between these three models as a function of the length-to-thickness ratio (slenderness) of the panel. It is shown that the proposed Reissner–Mindlin model best fits with the finite elements model.  相似文献   

6.
This is the first part of a two-part paper presenting the generalization of Reissner thick plate theory (Reissner in J. Math. Phys. 23:184–191, 1944) to laminated plates and its relation with the Bending-Gradient theory (Lebée and Sab in Int. J. Solids Struct. 48(20):2878–2888, 2011 and in Int. J. Solids Struct. 48(20):2889–2901, 2011). The original thick and homogeneous plate theory derived by Reissner (J. Math. Phys. 23:184–191, 1944) is based on the derivation of a statically compatible stress field and the application of the principle of minimum of complementary energy. The static variables of this model are the bending moment and the shear force. In the present paper, the rigorous extension of this theory to laminated plates is presented and leads to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. When the plate is homogeneous or functionally graded, the original theory from Reissner is retrieved. In the second paper (Lebée and Sab, 2015), the Bending-Gradient theory is obtained from the Generalized-Reissner theory and comparison with an exact solution for the cylindrical bending of laminated plates is presented.  相似文献   

7.
8.
In recent years a discussion could be followed where the pros and cons of the applicability of the Cosserat continuum model to granular materials were debated [Bardet, J.P., Vardoulakis, I., 2001. The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353–367; Kruyt, N.P., 2003. Static and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40, 511–534; Bagi, K., 2003. Discussion on “The asymmetry of stress in granular media”. Int. J. Solids Struct. 40, 1329–1331; Bardet, J.P., Vardoulakis, I. 2003a. Reply to discussion by Dr. Katalin Bagi. Int. J. Solids Struct. 40, 1035; Kuhn, M., 2003. Discussion on “The asymmetry of stress in granular media”. Int. J. Solids Struct. 40, 1805–1807; Bardet, J.P., Vardoulakis, I., 2003b. Reply to Dr. Kuhn’s discussion. Int. J. Solids Struct. 40, 1809; Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A., 2003. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702; Chang, C.S., Kuhn, M.R., 2005. On virtual work and stress in granular media. Int. J. Solids Struct. 42, 3773–3793]. The authors follow closely this debate and try, with this paper, to provide a platform where the various viewpoints could find their position. We consider an ensemble of rigid, arbitrarily shaped grains as a set with structure. We establish a basic mathematical framework which allows to express the balance laws and the action–reaction laws for the discrete system in a “global” form, through the concepts of “part”, “granular surface”, “separately additive function” and “flux”. The independent variable in the balance laws is then the arbitrary part of the assembly rather than the single grain. A parallel framework is constructed for Cosserat continua, by applying the axiomatics established by [Noll, W., 1959. The foundation of classical mechanics in the light of recent advances in continuum mechanics. In: The axiomatic method, with special reference to Geometry and Physics, North-Holland Publishing Co., Amsterdam pp. 266–281, Gurtin, M.E., Williams, W.O., 1967. An axiomatic foundation of continuum thermodynamics. Arch. Rat. Mech. Anal. 26, 83–117, Gurtin, M.E., Martins, L.C., 1976. Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60, 305–324]. The comparison between the two realisations suggests the microscopic interpretation for some features of Cosserat Mechanics, among which the asymmetry of the Cauchy-stress tensor and the couple-stress.  相似文献   

9.
N. Sarkar  A. Lahiri 《Meccanica》2013,48(1):231-245
Recently, Sherief et al. (Int. J. Solids Struct. 47:269–275, 2010) proposed a model in generalized thermoelasticity based on the fractional order time derivatives. The propagation of electro-magneto-thermoelastic disturbances in a perfectly conducting elastic half-space is investigated in the context of the above fractional order theory of generalized thermoelasticity. There acts an initial magnetic field parallel to the plane boundary of the half-space. Normal mode analysis together with the eigenvalue approach technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The obtained solution is then applied to two specific problems for the half-space, whose boundary is subjected to (i) thermally isolated surfaces subjected to time-dependent compression and (ii) a time-dependent thermal shock and zero stress. The effects of fractional parameter and magnetic field on the variations of different field quantities inside the half-space are analyzed graphically.  相似文献   

10.
A non-classical Kirchhoff plate model is developed for the dynamic analysis of microscale plates based on the modified couple stress theory in which an internal material length scale parameter is included. Unlike the classical Kirchhoff plate model, the newly developed model can capture the size effect of microscale plates. Two boundary value problems of rectangular micro- plates are solved and the size effect on the lowest two natural frequencies is investigated. It is shown that the natural frequencies of the microscale plates predicted by the current model are size-dependent when the plate thickness is comparable to the material length scale parameter.  相似文献   

11.
A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.  相似文献   

12.
基于新修正偶应力理论,在对微细观尺度的复合材料层合梁/板进行力学响应计算时,往往采用一系列假设来简化模型。现有文献都全部或部分应用了这些假设,但对这些假设是否会对计算结果造成影响尚未进行充分讨论分析。本文建立了未经简化的新修正偶应力Reddy层合板模型,并对其自由振动进行了分析。通过数值算例的对比,讨论了常用的几个简化假设对微细观复合材料四边简支方板自振频率的影响以及适用范围。算例结果表明,常用的几个简化假设对于微尺度层合薄板自由振动的影响很小,对于厚板的低阶频率影响也很小,但对厚板的高阶频率影响显著。  相似文献   

13.
In the first part of this two-part paper (Lebée and Sab in On the generalization of Reissner plate theory to laminated plates, Part I: theory, doi: 10.1007/s10659-016-9581-6, 2015), the original thick plate theory derived by Reissner (J. Math. Phys. 23:184–191, 1944) was rigorously extended to the case of laminated plates. This led to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. In this second paper, the Bending-Gradient theory (Lebée and Sab in Int. J. Solids Struct. 48(20):2878–2888, 2011 and 2889–2901, 2011) is obtained from the Generalized-Reissner theory and several projections as a Reissner–Mindlin theory are introduced. A comparison with an exact solution for the cylindrical bending of laminated plates is presented. It is observed that the Generalized-Reissner theory converges faster than the Kirchhoff theory for thin plates in terms of deflection. The Bending-Gradient theory does not converge faster but improves considerably the error estimate.  相似文献   

14.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

15.
16.
以新修正偶应力理论为基础,首次提出了机械载荷与热载荷共同作用下的微尺度Mindlin层合板热稳定性模型,该模型只引入一个材料尺度参数,通过虚功原理推导出了控制方程和边界条件,以四边简支方板为例,进行了热稳定性分析,应用纳维叶解法得到解析解。结果表明,所建模型可以捕捉到尺度效应。材料尺度参数值越大,屈曲临界温度越高;当跨厚比增大时,屈曲临界温度下降;随着板几何参数的增大,模型将退化为宏观模型;温度变化量越大,考虑热载荷作用下的屈曲临界载荷越大,尺度效应体现越显著。  相似文献   

17.
The aim of this paper is to study disclinations in the framework of a second strain gradient elasticity theory. This second strain gradient elasticity has been proposed based on the first and second gradients of the strain tensor by Lazar et al. [Lazar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817]. Such a theory is an extension of the first strain gradient elasticity [Lazar, M., Maugin, G.A., 2005. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184] with triple stress. By means of the stress function method, the exact analytical solutions for stress and strain fields of straight disclinations in an infinitely extended linear isotropic medium have been found. An important result is that the force stress, double stress and triple stress produced by wedge and twist disclinations are nonsingular. Meanwhile, the corresponding elastic strain and its gradients are also nonsingular. Analytical results indicate that the second strain gradient theory has the capacity of eliminating all unphysical singularities of physical fields.  相似文献   

18.
In this paper a new Kirchhoff plate model is developed for the static analysis of isotropic micro-plates with arbitrary shape based on a modified couple stress theory containing only one material length scale parameter which can capture the size effect. The proposed model is capable of handling plates with complex geometries and boundary conditions. From a detailed variational procedure the governing equilibrium equation of the micro-plate and the most general boundary conditions are derived, in terms of the deflection, using the principle of minimum potential energy. The resulting boundary value problem is of the fourth order (instead of existing gradient theories which is of the sixth order) and it is solved using the Method of Fundamental Solutions (MFS) which is a boundary-type meshless method. Several plates of various shapes, aspect and Poisson’s ratios are analyzed to illustrate the applicability of the developed micro-plate model and to reveal the differences between the current model and the classical plate model. Moreover, useful conclusions are drawn from the micron-scale response of this new Kirchhoff plate model.  相似文献   

19.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

20.
Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号