首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Methods that account for the flexibility of multibody systems extend the range of applications to areas such as flexible robots, precision machinery, vehicle dynamics or space satellites. The method proposed here for flexible multibody models allows for the representation of complex-shaped bodies using general finite-element discretizations which deform during the dynamic loading of the system, while the gross rigid body motion of these bodies is still captured using fixed-body coordinate frames. Components of the system for which the deformations are relatively unimportant are represented with rigid bodies. This method is applied to a road vehicle where flexibility plays an important role in its ride and handling dynamic behavior. Therefore, for the study of the limit behavior of the vehicles, the use of flexible multibody models is of high importance. The design process of these vehicles, very often based on intuition and experience, can be greatly enhanced through the use of generalized optimization techniques concurrently with multibody codes. The use of sparse matrix system solvers and modal superposition, to reduce the number of flexible coordinates, in a computer simulation, assures a fast and reliable analysis tool for the optimization process. The optimum design of the vehicle is achieved through the use of an optimization algorithm with finite-differencesensitivities, where the characteristics of the vehicle components are the design variables on which appropriate constraints are imposed. The ride optimization is achieved by finding the optimum of a ride index that results from a metric that accounts for the acceleration in several key points in the vehicle properly weighted in face of their importance for the comfort of the occupant. Simulations with different road profiles are performed for different speeds to account for diverse ride situations. The results are presented and discussed in view of the different methods usedwith emphasis on models and algorithms.  相似文献   

2.
孙加亮  田强  胡海岩 《力学学报》2019,51(6):1565-1586
多柔体系统是由柔性部件和运动副组成的力学系统,在航空、航天、车辆、机械与兵器等众多工程领域具有广泛的应用前景, 其典型的代表包括柔性机械臂、直升机旋翼、卫星的可展开天线、太阳帆航天器等. 近年来,随着工程技术的发展,多柔体系统动力学问题日益突出,尤其是含变长度柔性部件的多柔体系统,不仅涉及其动力学 建模与计算,还涉及其动力学优化设计. 事实上,部件柔性对多柔体系统的动力学行为影响很大,直接影响到优化结果,因此需要发展基于多柔体系统动力学的优化设计方法. 本文首先阐述了多柔体系统动力学优化的研究背景及意义,简要回顾了多柔体系统动力学建模的3类方法:浮动坐标方法、几何 精确方法和绝对节点坐标方法,并介绍了含变长度柔性部件的多柔体系统动力学建模方法. 系统概述了多柔体系统动力学响应优化、动力学特性优化和动力学灵敏度分析3个方面的研究进展,并从尺寸优化、形状优化和 拓扑优化 3 个方面综述了多柔体系统部件优化的研究进展. 本文最后提出了在多柔体系统动力学优化研究中值得关注的若干问题.   相似文献   

3.
平面柔性多体系统正碰撞动力学建模理论研究   总被引:3,自引:1,他引:2  
针对目前柔性多体系统碰撞动力学建模方法存在的不足,对影响碰撞动力学仿真的主要因素如柔性体建模和碰撞初始条件进行分析,建立起基于变约束的柔性体碰撞动力学方程。首先,为了解决子结构法在处理碰撞界面搜索时面临的难题,引入多体系统柔性体有限元描述方法,推导出凸形柔性体接触点间法向位移约束的二阶导数形式。其次,从碰撞引起的接触界面速度不连续机理出发,结合连续介质力学间断面理论,给出碰撞瞬时由物体本身物理性质决定的接触位置处速度跳跃公式。最后对两弹性圆盘低速碰撞问题进行数值仿真。结果表明本文提出的改进方法符合力学基本原理,仿真结果满足收敛性要求。  相似文献   

4.
轻质、高精度的柔性多体系统被广泛应用于实际工程领域中.由于实际设计公差、制造误差及环境温度等多种不确定因素的存在,使得柔性多体系统的结构参数(物理参数和几何参数)表现出随机性.具有随机结构参数的动力学模型能够客观地反映出真实系统的动力学行为,且结构参数的不确定性对空间柔性多体系统动力学响应的影响是不容忽视的.针对具有多个随机参数的空间柔性多体系统,提出了一种基于广义alpha算法的非侵入式随机柔性多体系统动力学计算方法.采用绝对节点坐标公式(absolute node coordinate formulation, ANCF)来描述柔性体, 推导建立多体系统动力学模型.利用混沌多项式展开(polynomial chaos expansion, PCE)法构建系统随机动力学方程的代理模型,然后将随机响应面法(stochastic response surface method, SRSM)嵌入广义-alpha方法中,分别采用改进抽样的回归方法(regression method of improved sampling, RMIS)和单项求容积法则(Monte Carlo simulation, MCR)来确定样本点.将数值计算结果与蒙特卡洛模拟(Monte Carlo simulation, MCS)结果进行对比, 验证了所提算法的有效性.在相同的定积分精度的条件下,根据单项求容积法则确定的样本点的计算结果稳定性更强, 且其计算效率更高.  相似文献   

5.
郭祥  靳艳飞  田强 《力学学报》2020,52(6):1730-1742
轻质、高精度的柔性多体系统被广泛应用于实际工程领域中.由于实际设计公差、制造误差及环境温度等多种不确定因素的存在,使得柔性多体系统的结构参数(物理参数和几何参数)表现出随机性.具有随机结构参数的动力学模型能够客观地反映出真实系统的动力学行为,且结构参数的不确定性对空间柔性多体系统动力学响应的影响是不容忽视的.针对具有多个随机参数的空间柔性多体系统,提出了一种基于广义alpha算法的非侵入式随机柔性多体系统动力学计算方法.采用绝对节点坐标公式(absolute node coordinate formulation, ANCF)来描述柔性体, 推导建立多体系统动力学模型.利用混沌多项式展开(polynomial chaos expansion, PCE)法构建系统随机动力学方程的代理模型,然后将随机响应面法(stochastic response surface method, SRSM)嵌入广义-alpha方法中,分别采用改进抽样的回归方法(regression method of improved sampling, RMIS)和单项求容积法则(Monte Carlo simulation, MCR)来确定样本点.将数值计算结果与蒙特卡洛模拟(Monte Carlo simulation, MCS)结果进行对比, 验证了所提算法的有效性.在相同的定积分精度的条件下,根据单项求容积法则确定的样本点的计算结果稳定性更强, 且其计算效率更高.   相似文献   

6.
提出了一种作大范围运动柔性梁的非接触动态测试技术.在基于位移的柔性多体系统几何精确建模及非线性有限元分析技术的基础上,利用EAGLE-500运动分析系统及其相应的分析软件对作大范围运动钛合金柔性梁作了实验研究,并且利用之前提出的几何精确梁理论进行数值仿真.数值仿真结果与实验结果完全吻合,验证了作者所提的几何精确梁理论及...  相似文献   

7.
刘铖  胡海岩 《力学学报》2021,53(1):213-233
多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group, LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系, 具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器, 以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.   相似文献   

8.
The modelling of flexible elements in mechanical systems has been widely investigated through several methods issuing from both the area of structural mechanics and the field of multibody dynamics. As regards the latter discipline, beside the problem of the generation of the multibody equations of motion, the choice of a spatial discretization method for modelling flexible elements has always been considered as a critical phase of the modelling. Although this subject is abundantly tackled in the open-literature, the latter probably lacks an objective comparison between the most commonly used approaches.This contribution presents an extensive investigation of several discretization techniques of flexible beams, in a pure multibody context. In particular, it is shown that shape functions based on power series monomials are very suitable and versatile to model beams being part of a multibody system and thus constitutes an interesting alternative to finite element analysis. For this purpose, a symbolic multibody program, in which various discretization techniques were implemented, was generalized to compute the equations of motion of a general multibody system containing flexible beams.  相似文献   

9.
The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms, but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deformation terms. In this paper, a new hybrid-coordinate formulation is proposed, which is suitable for flexible multibody systems with large deformation. On the basis of exact strain–displacement relation, equations of motion for flexible multibody system are derived by using virtual work principle. A matrix separation method is put forward to improve the efficiency of the calculation. Agreement of the present results with those obtained by absolute nodal coordinate formulation (ANCF) verifies the correctness of the proposed formulation. Furthermore, the present results are compared with those obtained by use of the linear model and the low-order approximate nonlinear model to show the suitability of the proposed models. The project supported by the National Natural Science Foundation of China (10472066, 50475021).  相似文献   

10.
The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.  相似文献   

11.
This paper examines a computer program developed to analyze the vibration of rotating machineries based on theories of vibration and multibody dynamics (MBD). Bending vibration problems of rotating machineries have generally been categorized as either linear or nonlinear. Linear problems can be formulated by standard methods and nonlinear problems can be formulated by MBD methods. In our study, nonlinear problems are treated by the use of a general-purpose computer program, RecurDyn (RD). In the program we developed, rotor bending vibration analysis (RotB) structural properties such as shafts, rotating rotary disks, unbalanced masses and foundation structures are modeled as multibody elements. Also, nonlinearities such as contact, non-symmetrical shaft effects, bearing characteristics, nonlinear restoring and damping characteristics in the bearings are taken into account. The computational results demonstrate the validity of RotB.  相似文献   

12.
Modal Representation of Stress in Flexible Multibody Simulation   总被引:1,自引:0,他引:1  
An application of the floating frame of reference formulation together with the nodal approach using quasi-comparison functions as shape functions allows an efficient analysis of stress in the flexible bodies of a multibody system. This is demonstrated using two simple examples. They are chosen to demonstrate the effects of various choices of shape functions and associated body reference frames. In the floating frame of reference formulation the equations of motion are linearized assuming the deformations to be small. The quasi-comparison functions, i.e. shape functions, can be selected in ways to increase the range of validity of the linearized equations of motion. The latter goal is achieved as well by so-called substructuring techniques. Combining both of the methodologies, one obtains efficient models for flexible multibody simulation.  相似文献   

13.
柔性多体系统动力学绝对节点坐标方法研究进展   总被引:8,自引:1,他引:7  
田强  张云清  陈立平  覃刚 《力学进展》2010,40(2):189-202
阐述了多体系统动力学理论的研究背景,指出了多种传统的柔性多体系统动力学研究方法的不足.系统地从4个方面回顾了柔性多体系统动力学绝对节点坐标方法诞生十几年以来的研究进展,即:单元研究进展、系统动力学方程求解数值算法研究进展、非线性材料多体系统动力学研究进展以及相关的应用研究进展.最后提出了值得进一步研究的问题.   相似文献   

14.
A hierarchical control concept for flexible robot manipulators is presented. The equations of motion are derived using the multibody system method, incorporating flexible links equipped with surface bonded actuating and sensing devices. Exploiting the structure of the dynamic model, the control concept allows combination of any joint level control for the gross motion of the manipulator with decentralized linear control of the elastic deformation of each flexible link. Therefore, the approach is capable of solving both the problem of fast and precise point-to-point motion, with acceptable vibration characteristics, and the problem of accurate trajectory tracking of the end-effector. Control parameters are found through parameter optimization. In order to verify the proposed control strategy, a SCARA robot with one flexible link is considered.  相似文献   

15.
16.
柔性多体系统动力学的若干热点问题   总被引:20,自引:2,他引:20  
于清  洪嘉振 《力学进展》1999,29(2):145-154
全面综述了柔性多体系统动力学近年来的研究成果.对建模方法、模态选取及模态综合、动力刚化及柔性多体系统动力学中微分-代数方程的数值方法等研究热点进行了详细的阐述,并简要展望了柔性多体系统动力学今后的发展趋势   相似文献   

17.
Nonlinear formulation for flexible multibody system with large deformation   总被引:1,自引:0,他引:1  
In this paper, nonlinear modeling for flexible multibody system with large deformation is investigated. Absolute nodal coordinates are employed to describe the displacement, and variational motion equations of a flexible body are derived on the basis of the geometric nonlinear theory, in which both the shear strain and the transverse normal strain are taken into account. By separating the inner and the boundary nodal coordinates, the motion equations of a flexible multibody system are assembled. The advantage of such formulation is that the constraint equations and the forward recursive equations become linear because the absolute nodal coordinates are used. A spatial double pendulum connected to the ground with a spherical joint is simulated to investigate the dynamic performance of flexible beams with large deformation. Finally, the resultant constant total energy validates the present formulation. The project supported by the National Natural Science Foundation of China (10472066, 10372057). The English text was polished by Yunming Chen.  相似文献   

18.
A new computation method is proposed to study the coupled dynamics of a partially liquid-filled flexible multibody system, where the liquid is modeled by using the Smoothed Particle Hydrodynamics (SPH) method and the flexible bodies are described by using the Absolute Nodal Coordinate Formulation (ANCF). Extra virtual particles are introduced and embedded in the liquid neighboring the rigid or flexible boundaries in order to prevent field particles from penetrating the boundary and force them to follow the deformation of flexible boundary. The interaction forces between the liquid and the flexible multibody system are transmitted by the virtual particles. The domain decomposition is used to improve the efficiency of interaction detection in SPH computation. A predictor-corrector scheme is used to solve the governing equations of liquid discretized by SPH particles. The generalized-alpha method based on sparse matrix storage skill is used to solve a huge set of dynamic equations of the multibody system. The OpenMP+OpenACC based parallel computation skills are embedded in the iteration processes to speed up the computation efficiency. Finally, three numerical examples are given to validate the proposed computation method.  相似文献   

19.
Dynamics of three-dimensional beams undergoing large overall motion   总被引:3,自引:0,他引:3  
In the previous linear formulation of flexible multibody system, the neglect of stiffening terms may cause significant error in case of high rotating speed. In this paper, a geometric nonlinear formulation of three-dimensional beams is proposed based on virtual power principle. Frequency results of a rotating spatial beam using the present nonlinear model are compared with those using the linear model without stiffening. An influence ratio, which is related to non-dimensional axial base acceleration and lateral angular velocity, is put forward to clarify the limit of the linear formulation. It is shown that the relative frequency error is closely related to the influence ratio. Finally, simulation of a flexible spatial manipulator is carried out to verify the effectiveness of the criterion.  相似文献   

20.
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号