首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional Lamé equations are solved using Cartesian and curvilinear orthogonal coordinates. It is proved that the solution includes only three independent harmonic functions. The general solution of equations of elasticity for stresses is found. The stress tensor is expressed in both coordinate systems in terms of three harmonic functions. The general solution of the problem of elasticity in cylindrical coordinates is presented as an example. The three-dimensional stress–strain state of an elastic cylinder subjected, on the lateral surface, to arbitrary forces represented by a series of eigenfunctions is determined. An axisymmetric problem for a finite cylinder is solved numerically  相似文献   

2.
A finite difference solution algorithm is described for use on two-dimensional curvilinear meshes generated by the solution of the transformed Laplace equation. The efficiency of the algorithm is improved through the use of a full approximation scheme (FAS) multigrid algorithm using an extended pressure correction scheme as smoother. The multigrid algorithm is implemented as a fixed V-cycle through the grid levels with a constant number of sweeps being performed at each grid level. The accuracy and efficiency of the numerical code are validated using comparisons of the flow over two backward step configurations. Results show close agreement with previous numerical predictions and experimental data. Using a standard Cartesian co-ordinate flow solver, the multigrid efficiency obtainable in a rectangular system is shown to be reproducible in two-dimensional body-fitted curvilinear co-ordinates. Comparisons with a standard one-grid method show the multigrid method, on curvilinear meshes, to give reductions in CPU time of up to 93%.  相似文献   

3.
Applications of fractional exterior differential in three-dimensional space   总被引:1,自引:0,他引:1  
IntroductionIngeneralizedintegrationanddifferentiationthequestionofextensionofmeaningis:canthemeaningofderivativesofintegralorderdny/dxnbeextendedtohavemeaningwherenisanynumber (e .g .,irrational,fractionorcomplex) ?In 1 695Leibnizinventedabovenotation .Eulara…  相似文献   

4.
In virtue of reference Cartesian coordinates,geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates.Dynamic equations for helical girder are derived by Hamilton principle.These equations indicate that four generalized displacements are coupled with each other.When spatial structure degener- ates into planar curvilinear structure,two generalized displacements in two perpendicular planes are coupled with each other.Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.  相似文献   

5.
Consideration is given to a class of static boundary-value problems of thermoelasticity and their solutions for bodies bounded by surfaces in orthogonal curvilinear coordinates. The following parameters are given: heat intensity, normal displacement, the tangential component of the curl of the displacement vector or temperature, the divergence of the displacement vector, and tangential displacement. The problem is reduced to the successive integration of the Laplace and Poisson equations with the classical boundary conditions. Specific problems of thermoelasticity are solved in Cartesian and cylindrical coordinates __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 9, pp. 137–144, September 2005.  相似文献   

6.
Two-dimensional initial-boundary value problems are considered for the shallow water equations and the equation of advection and dispersion of pollutants. The problems are solved in curvilinear boundary fitted co-ordinates. The transformed equations are integrated on a regular grid by the semi-implicit and implicit finite difference methods. Based on the numerical method, the integrated modelling system Cardinal for coastal area dynamics and pollution processes is developed for application on personal computers. Examples of computations are given.  相似文献   

7.
The importance of convective flows generated by surface tension gradients, in comparison with the ones generated by other driving forces, has been investigated in connection with space technological applications involving fluid processes. A theoretical model of the boundary conditions at the interface, considered free and diffusive, has been derived in general tensor form to allow for the use of non orthogonal curvilinear co-ordinates. For the study of flow fields contained in enclosures, these co-ordinates are more suitable to fit all teh boundaries, in particular near the contact angle between the interface and the solid walls, thus giving more accurate numerical solutions. A computational procedure to solve the complete set of bulk and surface equations is proposed and applied to a simplified two dimensional flow in a rectangular enclosure with a temperature gradient between the lateral walls. The numerical results show the importance of considering the interface to be deformable and diffusive for an accurate evaluation of the convective flow in the fluid bulk.  相似文献   

8.
A finite element solution of the Navier-Stokes equations for steady flow under the magnetic effect through a double-branched two-dimensional section of a three-dimensional model of the canine aorta is discussed. The numerical scheme involves transforming the physical co-ordinates to a curvilinear boundary-fitted co-ordinate system. The shear stress at the wall is calculated for a Reynolds number of 1000 with the branch-to-main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and found to be in reasonable qualitative agreement. The steady flow, shear stress and branch flow under the effect of a magnetic field have been discussed in detail.  相似文献   

9.
In this work, the magnetohydrodynamics (MHD) natural convection heat transfer problem inside a porous medium filled with inclined rectangular enclosures is investigated numerically. The boundary conditions selected on the enclosure are two adiabatic and two isothermal walls. The governing equations, continuity, and Forchheimer extension of the Darcy law and energy are transformed into dimensionless forms by using a set of suitable variables, and then solved by using a finite difference scheme. The governing parameters are the magnetic influence number, the Darcy Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. It is found that the magnetic influence number and the inclination angle have pronounced effects on the fluid flow and heat transfer in porous media-filled enclosures.  相似文献   

10.
A time-marching finite volume numerical procedure is presented for three-dimensional Euler analysis of turbomachinery flows. The proposed scheme is applied to the conservative form of the Euler equations written in general curvilinear co-ordinates. A simple but computationally efficient grid is constructed. Numerical solution results for three 3D turbine cascade flows have been presented and compared with available measurements as well as with another state-of-the-art 3D Euler analysis numerical solution in order to demonstrate the accuracy and computational efficiency of the analysis method. Also, the predicted results are compared with a 3D potential flow solver and comparison is made with the analytical solution. The proposed method is an accurate and reliable technique for solving the compressible flow equations in turbomachinery geometries.  相似文献   

11.
An alternative derivation to that given by Mehrabadi and Cowin (1978) is presented here for a pair of kinematic equations governing a certain class of flows in the plastic deformation of dilatant granular materials. This class has been described by Spencer (1981) as double shearing flows. In their derivation Mehrabadi and Cowin (1978), prior to presenting the equations relative to rectangular Cartesian coordinates, obtained an intermediate pair of equations relative to a non-orthogonal network of characteristic coordinates. The essential difference between the original and present derivation is that here, the flow rule, expressed relative to rotating, rectangular Cartesian coordinates, is transformed directly to obtain the kinematic equations relative to fixed rectangular Cartesian coordinate axes, without the need to obtain the characteristic equations.  相似文献   

12.
A finite volume method for the calculation of laminar and turbulent fluid flows inside constricted tubes and ducts is described. The selected finite volume method is based on curvilinear non-orthogonal co-ordinates (body-fitted co-ordinates) and a non-staggered grid arrangement. The grids are either generated by transfinite interpolation or an elliptic grid generator. The method is employed for calculation of laminar flows through a tube, a converging-diverging duct and different constricted tubes by both a two- and a three-dimensional computer program. In addition, turbulent flow through an axisymmetric constricted tube is calculated. Both the power law scheme and the second-order upwind scheme are used. The calculated results are compared with the experimental data and with other numerical solutions.  相似文献   

13.
Numerical simulation of open water flow in natural courses seems to be doomed to one- or two-dimensional numerical simulations. Investigations of flow hydrodynamics through the application of three-dimensional models actually have very few appearances in the literature. This paper discusses the development and the initial implementation of a general three-dimensional and time-dependent finite volume approach to simulate the hydrodynamics of surface water flow in rivers and lakes. The slightly modified Navier-Stokes equations, together with the continuity and the water depth equations, form the theoretical basis of the model. A body-fitted time-dependent co-ordinate system has been used in the solution process, in order to accommodate the commonly complex and irregular boundary and bathymetry of natural water courses. The proposed adaptive technique allows the mesh to follow the movement of the water boundaries, including the unsteady free-water surface. The primitive variable equations are written in conservative form in the Cartesian co-ordinate system, and the computational procedure is executed in the moveable curvilinear co-ordinate system. Special stabilizing techniques are introduced in order to eliminate the oscillating behaviour associated with the finite volume formulation. Also, a new and comprehensive approximation for the pressure forces at the faces of a control volume is presented. Finally, results of several tests demonstrate the performance of the finite volume approach coupled with the adaptive technique employed in the three-dimensional time-dependent mesh system.  相似文献   

14.
A complete three-dimensional mathematical model has been developed governing the steady, laminar flow of an incompressible fluid subjected to a magnetic field and including internal heating due to the Joule effect, heat transfer due to conduction, and thermally induced buoyancy forces. The thermally induced buoyancy was accounted for via the Boussinesq approximation. The entire system of eight partial differential equations was solved by integrating intermittently a system of five fluid flow equations and a system of three magnetic field equations and transferring the information through source-like terms. An explicit Runge-Kutta time-stepping algorithm and a finite difference scheme with artificial compressibility were used in the general non-orthogonal curvilinear boundary-conforming co-ordinate system. Comparison of computational results and known analytical solutions in two and three dimensions demonstrates high accuracy and smooth monotone convergence of the iterative algorithm. Results of test cases with thermally induced buoyancy demonstrate the stabilizing effect of the magnetic field on the recirculating flows.  相似文献   

15.
Newton's method is applied to the finite volume approximation for the steady state heat transfer, fluid flow and unknown interfaces in a floating molten zone. The streamfunction/vorticity and temperature formulation of the Navier–Stokes and energy equations and their associated boundary conditions are written in generalized curvilinear co-ordinates and conservative law form with the Boussinesq approximation. During Newton iteration the ILU(0) preconditioned GMRES matrix solver is applied for solving the linear system, where the sparse Jacobian matrix is estimated by finite differences. Nearly quadratic convergence of the method is observed. Sample calculations are reported for sodium nitrate, a high-Prandtl-number material (Pr = 9.12). Both natural convection and thermocapillary flow as well as an overall mass balance constraint in the molten zone are considered. The effects of convection and heat input on the flow patterns, zone position and interface shapes are illustrated. After the lens effect due to the molten zone is considered, the calculated flow patterns and interface shapes are compared with the observed ones and are found to be in good agreement.  相似文献   

16.
A complete system of equations determining a viscous laminar, strongly overexpanded jet is obtained; the system is formed by shortened Navier—Stokes equations, equations for the metric of a coordinate system related with the form of the jet, and equations of transition from curvilinear coordinates to Cartesian. The problem of calculating the jet is formulated as a Cauchy problem for this system. Two- and three-dimensional flows are examined. Possible swirling of the jet is taken into account.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 137–147, March–April, 1977.  相似文献   

17.
18.
This paper concerns a numerical prediction method for buoyancy-influenced flows using three-dimensional non-orthogonal curvilinear co-ordinates. The numerical analysis of the transformed governing equations for thermal hydraulics is based on a Lagrangian method, in which advected physical values are evaluated by local cubic spline interpolations with third-order accuracy in the three-dimensional computational domain. In addition, the buoyancy and diffusion terms are discretized in the Lagrangian scheme so as to have second-order accuracy with respect to time and space. The Neumann boundary conditions, which have been rather difficult for non-orthogonal co-ordinates to deal with, can be implemented by making use of normal vectors on the physical boundary surfaces and cubic spline interpolations. The developed numerical method is applied to the steady isothermal flow in a curved pipe and the unsteady stratified flow in a curved duct. Both of the predicted values are in good agreement with the experimental results and the validity of the prediction method is confirmed.  相似文献   

19.
A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method is based on a staggered grid arrangement and the contravariant flux componets are chosen as primitive variables. Turbulence is modelled either by the standard k–ε model or by a k–ε model based on RNG theory. Convection is approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this method to a complex turbulent flow is presented. The results of computations are compared with experimental data and other numerical solutions and are found to be satisfactory.  相似文献   

20.
The three-dimensional equations of electroelasticity in Cartesian, cylindrical, and spherical coordinates are represented in Hamiltonian form with respect to the thickness coordinate. The boundary-value problem with a harmonic potential difference and zero mechanical load given on the boundaries is solved numerically. The amplitude–frequency characteristics and natural frequencies are compared. The resonant and antiresonant frequencies of the current and the dynamic electromechanical coupling coefficient are determined  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号