首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Particle image velocimetry (PIV) was employed to study the flow patterns, time-averaged velocity field, and turbulence properties of the flow in the interdisk midplane between two shrouded co-rotating disks at the interdisk spacing to disk radius ratio S = 0.1 and rotating Reynolds number Re = 2.25 × 105. A quadrangle core flow structure rotating at a frequency 75% of the disks’ rotating frequency was observed. The flow in the region outside the quadrangle core flow structure consisted of four cellular flow structures. Five characteristic flow regions—the hub-influenced region, solid-body rotation region, buffer region, vortex region, and shroud-influenced region—were identified in the flow field. Circumferential and radial turbulence intensities, Reynolds stresses, turbulence kinetic energy, correlation coefficients, as well as the Lagrangian integral time and length scales of turbulent fluctuations were analyzed and presented. Features of the turbulence properties were found to be closely related to the rotation motion of the inner and outer characteristic flow structures. The circumferential components of the turbulence properties exhibited local minima in the buffer region and maxima in the solid-body rotation and vortex regions, while the radial components of the turbulence intensity, turbulent normal stress, and Lagrangian integral turbulence time scale exhibited maximum values in the buffer region and relatively low values in the regions near the hub and the shroud.  相似文献   

2.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

3.
An experimental investigation of the flow dynamics in a channel with a corrugated surface is presented. Particle image velocimetry was used to obtain two-dimensional velocity fields at three different locations along the channel length, over a range of Reynolds numbers. The results show a significant impact of the corrugation waveform on the mean and turbulent flow structure inside the channel. Strong bursting flow originating from the trough, sweeping flow from the bulk region and the vortex shedding off the crest were observed. Their interactions created a complex three-dimensional flow structure extended over almost the entire channel. The mean velocity profiles indicate a strong diffusion of shear. The profiles of various turbulent properties show the enhancement of turbulence in the vicinity of the waveform. It was found that the turbulence in the channel was almost entirely produced in this region above the corrugation trough. Significant momentum transfer from the corrugation wall by the turbulent velocity field was also observed. The mean and turbulent flow behaviour was found to be periodic with respect to the waveform over most of the channel length. The results show the presence of strong turbulence even at the Reynolds number that falls within the conventional laminar range.  相似文献   

4.
The objective of the present work is to predict compressible swirl flow in the nozzle of air‐jet spinning using the realizable k–ε turbulence model and discuss the effect of the nozzle pressure. The periodic change of flow patterns can be observed. The recirculation zone near the wall of the injectors upstream increases in size and moves gradually upstream, whereas the vortex breakdown in the injector downstream shifts slowly towards the nozzle outlet during the whole period. A low axial velocity in the core region moves gradually away from the centerline, and the magnitude of the center reverse flow and the area occupied by it increase with axial distance due to the vortex breakdown. From the tangential velocity profile, there is a very small free‐vortex zone. With increasing nozzle pressure, the velocity increases and the location of vortex breakdown is moved slightly downward. However, the increase in the velocity tends to decline at nozzle pressure up to a high level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
脊状表面减阻机理研究   总被引:2,自引:1,他引:1  
针对脊状表面流场的特点,通过实验测量和数值模拟的方法对脊状表面微观流场进行了深入研究,获得了脊状表面湍流边界层的时均速度分布曲线、湍流度分布曲线和微观流场结构.为了得到脊状结构对壁面物性的影响,对脊状表面进行了疏水性测试,获得了液滴在脊状表面上的表观接触角,并通过水洞试验验证了脊状表面的减阻效果.研究表明,与光滑表面相比,脊状表面微观流场结构中存在"二次涡",近壁区的黏性底层厚度比平板的要厚得多,湍流度显著降低,且脊状表面表现出明显的疏水性.由此提出了基于壁面隔离效应、增大湍流阻尼效应和改变壁面物性效应的减阻机理.  相似文献   

6.
充分发展圆管湍流的实验研究   总被引:4,自引:0,他引:4  
采用粒子数字图像测速(digital particle image velocimetry,DPIV)和定量流动显示技术(quantitative flow visualization,QFA)对充分发展的圆管湍流进行了研究。测量结果和直接数值模拟(direct numerical simulation,DNS)结果进行了比较,结果表明作者开发的DPIV技术取得了满意的精度。在此基础上对圆管湍流的动力学机理进行了研究,分析了上抛和下扫在湍流生成中的贡献以及流动显示结构内的脉动速度分布,测量结果显示在圆管湍流的近壁区存在横向强脉冲现象和流动显示所能观察到的结构为上抛占主导地位的结构。  相似文献   

7.
Laser-Doppler velocimeter measurements of a wing/body junction flow field made within a plane to the side of the wing/wall junction and perpendicular both to a 3:2 elliptical nose—NACA 0020 tail wing, and a flat wall are presented. Reynolds number of the approach boundary layer was, Reθ = 5940, and free-stream air velocity was, Uref = 27.5 m/s. A large vortical structure residing in the outer region redirects the low-turbulence free-stream flow to the vicinity of the wing/wall junction, resulting in thin boundary layers with velocity magnitudes higher than free-stream flow. Lateral pressure gradients result in a three-dimensional separation on the uplifting side of the vortex. Additionally, a high vorticity vortical structure with opposite sense to the outer-layer vortex forms beneath the outer-layer vortex. Normal and shear stresses increase to attain values an order of magnitude larger compared to values measured in a three-dimensional boundary layer just outside the junction vortex. Bimodal histograms of the w fluctuating velocity occur under the outer-layer vortex near the wall due to the time-dependent nature of the horseshoe vortex. In such a flow the shear-stress angle (SSA) highly lags the flow-gradient angle (FGA), and the turbulence diffusion is highly altered due to presence of vortical structures.  相似文献   

8.
单柱单锥型液—液旋流分离管内流场的LDV诊断   总被引:2,自引:0,他引:2  
应用二维激光多普勒仪(LDV)对一种单柱单锥型液-液旋流分离管内流场进行了测量,考察了流量、溢流比、压力比和气芯等参数对流场的影响。测量结果表明:切向速度分布呈典型的Rankine涡结构,沿轴向衰减很少,表明所用锥角是合适的;因该旋流管的水力直径较大,切向速度的总体水平较低,由于对了离特性带来了不利影响。此外,没有观察到切向速度分布的的双峰分布现象。轴向速度的总体水平较低,尤其是在锥形管的上游更为  相似文献   

9.
Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.  相似文献   

10.
The propagation of rough and smooth wall pre-existing turbulent fluid fractures is investigated. The laminar fluid fracture is included as a special case for comparison. Lubrication theory is assumed to apply in the fracture and turbulence is introduced through the wall shear stress. The Perkins–Kern–Nordgren approximation is made in which the fluid pressure is proportional to the half-width of the fracture. The fracture half-width satisfies a non-linear diffusion equation. By using a linear combination of the Lie point symmetries of the non-linear diffusion equation a group invariant solution for the fracture length, volume and half-width is derived. The evolution of the length, half-width and mean flow velocity is analysed for a range of working conditions at the fracture entry. It is found that the mean flow velocity increases approximately linearly along the fracture.  相似文献   

11.
The flow structure in a steady hydraulic jump in both the non-aerated and aerated regions was measured using the image-based particle image velocimetry and bubble image velocimetry techniques, respectively. Three highly aerated steady jumps with Froude numbers varying from 4.51 to 5.35 were tested, and a weak jump with a Froude number of 2.43 was generated for comparison. Mean velocities and turbulence statistics were obtained by ensemble averaging the repeated velocity measurements. Based on the mean velocities, the flow structure in the steady jumps was classified into four regions to distinguish their distinct flow behaviors; they are the potential core region, the boundary layer region, the mixing layer region, and the recirculation region. The flow structure in the weak jump features only three regions without the recirculation region. In addition, spatial variations of mean velocities, turbulence intensity, and Reynolds stresses were also presented. It was observed that the maximum horizontal bubble velocity and maximum horizontal water velocity occur at the same location in the overlapping regions of potential core and mixing layer. The ratio between the maximum horizontal bubble velocity and maximum horizontal water velocity is between 0.6 and 0.8, depending on the Froude number. Examining the mean horizontal bubble velocities in the mixing layer, a similarity profile was revealed with representative mixing layer thickness as the characteristic length scale and the difference between the maximum positive and maximum negative velocities as the characteristic velocity scale. It was also found that the mean horizontal water velocities in the near-wall region are self-similar and behave like a wall jet. Further analyzing autocorrelation functions and energy spectra of the water and bubble velocity fluctuations found that the energy spectra in the water region follow the ?5/3 slope, whereas the spectra in the bubble region follow a ?2/5 slope. In addition, the integral length scale of bubbles is one order of magnitude shorter than that of water.  相似文献   

12.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

13.
This paper studies the properties of turbulent swirling decaying flow induced by tangential inlets in a divergent pipe using the realizable k–ε turbulence model and discusses the effects of the injector pressure and injection position. The results of transient solutions show that both the recirculation zone near the wall in upstream of the injectors and the vortex breakdown in downstream of the injectors increase in size during the whole period. A nearly axisymmetric conical breakdown is formed and its internal structure consists of two asymmetric spiral‐like vortices rotating in opposite directions. The stagnation point shifts slowly toward the pipe outlet over time. The maxima of the three velocity components, which are located near the wall, decrease gradually with streamwise direction. It can also be inferred that Mach number approaches 1.0 near the injector outlets. The velocities increase with the increasing injector pressure. However, its increasing trend is not significant. With the increase of the injection position, vortex breakdown moves in downstream direction and the pitch along the streamwise direction increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
为了得到壁面温度在不同来流速度、不同湍流强度条件下对边界层转捩与减阻的影响规律,本文采用Transitionk-kl-ω模型对低来流速度下无压力梯度的光滑平板进行了数值模拟。结果表明,随着来流速度的升高,壁温升高所起到的减阻效果更好,即高来流速度对壁面温度更为敏感。当来流处于中高湍流强度下时,壁温升高能起到推迟转捩的作用,且随着湍流强度的升高,转捩推迟的效果越好,但减阻效果正好相反;当来流处于低湍流强度下时,壁温升高会使得转捩提前发生。壁温升高抑制了边界层内流体的脉动程度,使得层流的稳态不易被破坏,流动更加稳定;同时,壁温升高使得边界层内流体的速度梯度减小,从而降低了壁面摩擦系数,故壁温升高能起到推迟边界层转捩与减阻的作用。  相似文献   

15.
The predictive performance of several turbulence models, among them formulations based on non-linear stress-strain relationships and on stress-transport equations, is examined in a collaborative university-industry study directed towards a generic wing-body junction. The geometry consists of a variation of the symmetric NACA 0020 aerofoil mounted on a flat plate, with the oncoming stream aligned with the aerofoil's symmetry plane. The dominant feature of this flow is a pronounced horseshoe vortex evolving in the junction region following separation ahead of the aerofoil's leading edge. This case is one of 6 forming a broad programme of turbulence-model validation by UMIST, Loughborough University, BAE Systems, Aircraft Research Association, Rolls-Royce plc and DERA. Key aspects of this collaboration were a high level of interaction between the partners, the use of common grids and boundary conditions, and numerical verifications aimed at maximizing confidence in the validity of the computational solutions. In total, 12 turbulence models were studied by four partners. Model performance is judged by comparing solutions with experimental data for pressure fields on the plane wall and around the aerofoil; for velocity, turbulence energy, shear stress and streamwise normal stress in the upstream symmetry plane; and for velocity, turbulence energy and shear stress in cross-flow planes downstream of the aerofoil leading edge. The emphasis of the study is on the structure of the horseshoe vortex and its effects on the forward flow. The main finding of the study is that, for this particular 3D flow, second-moment closure offers predictive advantages over the other models examined, especially in terms of the far-field structure of the horse-shoe vortex, although no model achieves close agreement with the experimental data in respect of both mean flow and turbulence quantities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The effect of pulsed jet vortex generators on the structure of an adverse pressure gradient turbulent boundary layer flow was investigated. Two geometrically optimised vortex generator configurations were used, co-rotating and counter-rotating. The duty cycle and pulse frequency were both varied and measurements of the skin friction (using hot films) and flow structure (using stereo PIV) were performed downstream of the actuators. The augmentation of the mean wall shear stress was found to be dependent on the net mass flow injected by the actuators. A quasi steady flow structure was found to develop far downstream of the injection location for the highest pulse frequency tested. The actuator near field flow structure was observed to respond very quickly to variations in the jet exit velocity.  相似文献   

17.
Experiments on the modulation characteristics of the wall shear stress τ′-longitudinal velocity u′ and u′−u′ space–time correlations are reported in a forced turbulent channel flow in a wide range of imposed frequencies. The resulting integral and Taylor scale properties are discussed in detail in the low buffer layer under steady and unsteady flow conditions. It is shown that the small-scale turbulence is sensitive to the imposed unsteadiness since the amplitude and phase of the Taylor length scale vary considerably in the imposed frequency range investigated here. The Taylor hypothesis is acceptably valid in steady and unsteady wall layers just above the low buffer layer. Production and instantaneous pressure gradients are mostly responsible for the deviation of the frozen turbulence-state in the viscous and low buffer sublayers.  相似文献   

18.
Turbulent flow in a three-dimensional driven cavity has been simulated directly by solving the Navier–Stokes equations. The results at Re=3200 and 10 000 compare well with the experimental data. Viscous dissipation rate has been calculated without making the assumption of isotropy. Near the top moving wall, the instantaneous dissipation rate is very high and also has high amplitude. Its frequency increases but amplitude decreases as one moves away from the wall and it becomes intermittent in the vortex core. The high Reynolds number assumption that dissipation is mainly due to the fluctuating velocity components is seen to be true in the present case except near the wall. The Kolmogorov length scale attains higher values in the core of the primary vortex due to low dissipation rate there. A value of 0.01 times the size of the cubic cavity is a good representative value at Re=10 000. Even though the present (84×84×84) grid cannot resolve this scale very well, it can resolve all the scales dynamically significant in the flow as seen from the velocity and dissipation spectra.  相似文献   

19.
Detailed measurements in a developed particle-laden horizontal channel flow (length 6 m, height 35 mm, the length is about 170 channel heights) are presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity. The particles were spherical glass beads with mean diameters in the range of 60 µm-1 mm. The conveying velocity could be varied between about 10 m/s and 25 m/s, and the particle mass loading could reach values of about 2 (the mass loading is defined as the ratio of particle to gas phase mass flow rates), depending on particle size. For the first time, the degree of wall roughness could be modified by exchanging the wall plates. The influence of these parameters and the effect of inter-particle collisions on the profiles of particle mean and fluctuating velocities and the normalised concentration in the developed flow were examined. It was shown that wall roughness decreases the particle mean velocity and enhances fluctuating velocities due to irregular wall bouncing and an increase in wall collision frequency, i.e. reduction in mean free path. Thereby, the larger particles are mainly more uniformly distributed across the channel, and gravitational settling is reduced. Both components of the particle velocity fluctuation were reduced with increasing mass loading due to inter-particle collisions and the momentum loss involved. Moreover, the effect of the particles on the air flow and the turbulent fluctuations was studied on the basis of profiles in the developed flow and turbulence spectra determined for the streamwise velocity component. In addition to the effect of particle size and mass loading on turbulence modulation, the influence of wall roughness was analysed. It was clearly shown that increasing wall roughness also results in a stronger turbulence dissipation due to two-way coupling.  相似文献   

20.
 Velocity statistics along the stagnation line of an axi-symmetric wall stagnating turbulent flow are studied experimentally. A low turbulence, uniform air flow from a nozzle type air supply with an exit diameter of 50 mm stagnates at a wall located 50 mm downstream. A flow velocity is set to 3 m/s, 10 mm downstream from the exit of the air supply. Instantaneous values of streamwise and radial velocities are measured by laser-Doppler velocimetry. The turbulence level in the air flow is changed by use of turbulence generator. When the turbulence generator is not installed in the air supply, the mean velocity profile in the streamwise direction fits well with that of a laminar viscous flow with the rms value of velocity fluctuations low near the wall. With the turbulence generator installed, a significant turbulence structure appears near the wall. When the wall is approached, the rms value of velocity fluctuations in the streamwise direction decreases monotonically while the profile of the rms value in the radial direction reaches a maximum near the wall. The increase in the rms value of velocity fluctuations in the radial direction near the wall is attributed to the bi-modal histogram of the fluctuating velocity in the radial direction. Near the wall, the instantaneous stagnation streamline fluctuates and the probability of the mean location of the stagnation point reaches a maximum not at the stagnation line but on a circle around the stagnation line, resulting in the bi-modal histogram. Turbulence statistics, the rms value of velocity fluctuation and the turbulent kinetic energy, can be normalized successfully by similarity parameters based on the strain rate and the reference turbulent kinetic energy introduced by Champion and Libby. Received: 7 April 1995/Accepted: 27 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号