首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
有氧化剂(AP)含铝炸药的爆轰性能   总被引:4,自引:1,他引:3  
对有氧化剂含铝炸药(RDX/AP/Al/粘合剂=20/43/25/12,下称含铝炸药)爆轰反应的点火增长模型进行研究。用VLW状态方程方法计算了含铝炸药爆轰产物JWL状态方程;用激光速度干涉仪(VISAR)测量炸药/窗口界面粒子速度和炸药驱动金属平板自由表面速度,对试验进行了数值模拟计算,拟合了含铝炸药的反应速率方程。研究结果表明,用VLW状态方程方法和炸药/窗口界面粒子速度确定JWL状态方程和反应速率方程可行,金属平板驱动试验的计算结果与试验结果吻合。  相似文献   

2.
利用激光速度干涉仪研究了含微米铝粉和纳米铝粉复合炸药加速金属平板的能力,结果表明纳米铝粉的引入能够获得更大的金属平板自由面速度,其反应时间比微米复合含铝炸药缩短35.1%。研究了氧化剂的形态对含铝炸药性能的影响,用物理化学手段获得的RDX/AP复合粒子复合粒子制作的含铝炸药加速金属平板的能力优于机械混合RDX/AP的含铝炸药,前者的反应时间也比后者短。此外,还研究了以富氧炸药取代RDX获得的含铝炸药的性能,结果表明其加速金属平板的速度比RDX/Al复合炸药提高10%。  相似文献   

3.
基于圆筒实验的RDX/Al炸药反应进程   总被引:2,自引:0,他引:2  
对RDX炸药和2种铝粉质量分数分别为15%、30%的RDX基含铝炸药进行?50mm圆筒实验,研究铝粉含量对炸药做功能力的影响,根据格尼公式分析铝粉与爆轰产物的反应进程。结果表明:在圆筒实验记录的时间范围内,铝粉质量分数为15%的含铝炸药做功能力最强,RDX炸药次之,铝粉质量分数为30%炸药做功能力最弱;34μs时刻,铝粉质量分数为15%的炸药,铝粉的反应度为0.49,而铝粉质量分数为30%炸药铝粉的反应度仅为0.21,含铝炸药中铝粉的反应时间在50~200μs之间。  相似文献   

4.
段继 《爆炸与冲击》2021,41(9):13-23
针对含铝炸药爆轰的非理想特性,提出了含铝炸药爆轰产物膨胀的局部等熵假设,建立含铝炸药爆轰驱动的非线性特征线模型,为研究含铝炸药爆轰产物的非等熵流动和膨胀做功提供了一种新的理论分析方法。设计了5、50 μm含铝炸药和含LiF炸药驱动0.5、1 mm厚金属板实验,通过激光位移干涉仪测试金属板运动的速度历程,再通过实验结果计算得到铝粉在爆轰产物中的反应度变化规律,结合含铝炸药爆轰产物的非线性特征线模型,理论计算了含铝炸药驱动金属板的速度历程。对比理论与实验结果,理论方法能够很好地描述铝粉二次反应对炸药做功能力的贡献,同时验证了含铝炸药爆轰驱动的非线性特征线模型的正确性。  相似文献   

5.
铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响   总被引:1,自引:0,他引:1  
为了研究CL-20基含铝炸药的爆炸反应机理,利用水中爆炸实验,测量了不同铝粉含量和粒度的CL-20炸药水中爆炸的冲击波参数、二次压力波参数,计算了冲击波能和气泡能。结果表明,水中爆炸的冲击波能和气泡能表征了爆轰和二次反应两个阶段的炸药爆炸能量分配,CL-20炸药中的铝粉主要在二次反应阶段发生反应,只有少部分的铝粉参与了早期的爆轰反应。气泡脉动形成的二次压力波能描述铝粉含量和粒度对二次反应过程的影响,铝粉含量对炸药的二次反应有显著的影响;铝粉粒度对炸药的水下爆炸的初始冲击波参数、冲击波能和气泡能的影响很小,对铝粉与爆轰产物的二次反应速率影响较大。  相似文献   

6.
不同铝粉尺寸含铝炸药加速金属能力的研究   总被引:16,自引:2,他引:14  
对铝粉直径从几十纳米到几十微米的几种含铝炸药,进行了小尺寸装药条件下炸药加速金属平板实验,用激光速度干涉仪测量了金属平板自由面速度,比较了几种炸药对不同厚度金属平板的加速时间和加速能力。分析了铝粉在炸药爆轰中的反应情况。在小尺寸装药下,铝粉加入炸药和铝粉尺寸大小对炸药爆轰性能有明显影响。纳米铝粉使炸药作功能力有较大提高。含铝炸药爆轰中,铝主要在爆轰后期与爆轰产物反应。  相似文献   

7.
为了获得几种常用炸药的爆压和反应区宽度数据,采用激光干涉测试技术对TNT、PETN、RDX、HMX、TATB和CL-20炸药的稳态爆轰波界面粒子速度进行了测试,获得了高精度的界面粒子速度时程曲线,利用阻抗匹配公式计算得到了炸药的爆压。结果表明:PETN、RDX、HMX和CL-20等理想炸药的界面粒子速度曲线存在较明显的拐点,爆轰反应区较窄,反应时间为7~15 ns。TNT和TATB炸药由于存在碳凝聚慢反应过程,界面粒子速度曲线没有明显的拐点,爆轰反应时间分别为(100±15) ns和(255±20) ns。初步的不确定度分析表明,激光干涉法测试爆压的相对扩展不确定度为4.4%(包含因子k=2)。  相似文献   

8.
基于爆轰数值模拟计算,分析了CL-20混合炸药爆轰反应的特征,设计了炸药与窗口的界面粒子速度测量实验装置;采用激光干涉法,测量了C-1炸药(CL-20/粘合剂/94/6)与窗口的界面粒子速度; 运用先求导、再分段拟合的方法,对界面粒子速度随时间的变化曲线进行了数据处理,确定了炸药爆轰CJ点对应的时间位置;根据CJ点对应的粒子速度,计算获得了炸药的爆轰反应区宽度和CJ爆轰压力。结果显示:密度为1.943 g/cm3的C-1炸药的爆轰反应时间为38 ns,CJ压力为34.2 GPa。  相似文献   

9.
2021-08期封面     
铝粉反应模型是对悬浮铝粉尘气-固两相爆轰进行数值模拟研究的关键。通过考虑铝粉燃烧产物氧化铝(Al2O3)在高温下的分解吸热反应,改进了铝粉的扩散燃烧模型。将该模型嵌入到三维的气-固两相爆轰数值计算程序中,分别对铝粉/空气混合物以及铝粉/氧气混合物的爆轰进行了数值模拟,计算得到的稳定爆轰波速度与实验结果、文献值均吻合较好,误差小于5.5%,表明改进的铝粉反应模型适用于不同氧化气体氛围中铝粉尘爆轰的模拟计算。此外,对两相爆轰参数及爆轰流场的物理量分布进行分析,获得了铝粉反应模型对爆轰波结构的影响规律。  相似文献   

10.
将铝纤维炸药与传统铝粉炸药和RDX炸药进行空中爆炸实验并得到压力时程曲线,经过分析计算得到3种炸药的压力峰值、二次击波、正相持续时间以及冲量。结果表明:铝纤维炸药的压力峰值相对于RDX没有明显提高,但其压力时程曲线衰减速度慢于RDX的,使铝纤维炸药的正相持续时间大于RDX,铝纤维炸药的冲击波冲量相对于RDX的平均提高了18%,与铝粉炸药的相当。铝纤维炸药的二次击波超压幅值与到达时间与铝粉炸药的接近,而铝纤维炸药的二次击波到达时间早于RDX,说明二次击波的超压幅值与到达时间与炸药类型有关。  相似文献   

11.
炸药的反应区数据对爆轰过程的精密建模具有重要意义,为了得到JOB-9003炸药的反应区信息,采用光子多普勒测速仪(PDV)对JOB-9003炸药的爆轰反应区进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药一维稳态爆轰时的界面粒子速度,测试过程的时间分辨率小于1 ns,测速相对不确定度小于2%。通过读取界面粒子速度时程曲线的拐点来确定CJ点,根据阻抗匹配公式计算炸药的CJ压力。研究结果表明,JOB-9003炸药界面粒子速度时程曲线上存在较为明显的拐点,JOB-9003炸药的化学反应时间为(11±2)ns,对应的化学反应区宽度为(0.075±0.014)mm,JOB-9003炸药的CJ爆压为(35.6±0.9)GPa,冯诺依曼(Von Neumann)峰处的压力为(47.9±1.2)GPa。  相似文献   

12.
悬浮RDX炸药和铝颗粒混合粉尘爆轰的数值模拟   总被引:2,自引:0,他引:2  
采用两相流方法对炸药颗粒直径为20.0 m时与铝颗粒混合物的爆轰波的发展与传播过程及爆轰波参数进行了数值计算。结果表明,在炸药粉尘中加入铝颗粒,可以大大提高爆轰波参数。当铝颗粒直径为3.4 m时,尽管铝颗粒的直径较炸药颗粒直径小,但由于炸药颗粒的点火温度低,二者的点火时间相差不多。如果铝颗粒的直径为7.0 m,由于铝颗粒的点火滞后于炸药颗粒的点火,混合颗粒粉尘中可能形成双波阵面的爆轰波。  相似文献   

13.
基于多普勒测速技术的JB-9014炸药反应区结构研究   总被引:1,自引:0,他引:1  
为了解TATB基JB-9014炸药的爆轰过程,利用火炮驱动飞片加载,采用光子多普勒测速技术,对JB-9014炸药的爆轰反应区结构进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药爆轰时的界面粒子速度,测试过程的时间分辨率小于2 ns。将粒子速度剖面对时间进行一阶求导,通过一阶导数的拐点来确定炸药反应区宽度、反应时间。研究结果表明,钝感炸药JB-9014的反应时间为(0.26±0.02)μs,对应的化学反应区宽度为(1.5±0.2)mm,反应结束点处的压力为27.3 GPa,von Neumann峰处压力为40.3 GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号