首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
爆轰驱动激波风洞的自由来流模拟范围与驱动气体的爆轰极限密切相关,爆轰极限越宽则模拟范围越大。驱动气体一般是通过点火管进行起爆的,提高点火管的起爆能力可以拓宽爆轰极限。为了提高点火管起爆能力,就点火管口径、点火气体爆轰敏感性和单/双点火管3种因素的影响进行了实验研究。在不同的点火管初始条件下,对驱动段波速进行了测量。结论如下:(1)提高点火管口径可以显著提升起爆能力;(2)点火气体爆轰敏感性对起爆能力有影响,点火管为缩径内型面时,低敏感性气体起爆能力更强,点火管为等径内型面时则低敏感性气体和高敏感性气体的起爆能力大体持平;(3)在保证射流同步的前提下,双点火管能够提高起爆能力,为保证射流同步性需使用化学恰当比的氢氧混气等爆轰敏感性强的点火气体。  相似文献   

2.
《爆炸与冲击》2005,25(6):540-540
可提供高电压、快前沿、顶部平坦、波形光滑无振荡的脉冲,用以驱动快速开关器件。已研制多种类型、应用在不同场合中。  相似文献   

3.
声表面波(SAW)器件以其优良的性能广泛应用于雷达、通讯和日常用品等领域。然而,随着器件工作频率的不断升高,温度对器件频率稳定性的影响也越来越严重。因此,研究声表面波器件的温度效应,并在变温情况下保持SAW器件的频率稳定性至关重要。本文采用增量型的拉格朗日方程分析受温度影响的声表面波频率漂移问题。用频率-温度系数(TCF)作为评价频率-温度行为的标准。设计了一个具有温度补偿层的双层SAW谐振器模型,降低了器件的频率-温度系数。通过尺寸优化,LiNbO3-AlN结构的SAW谐振器在25℃(参考温度)下的频率温度系数TCF接近0ppm/℃。SAW谐振器的波长为4μm,谐振频率为1214.9MHz。  相似文献   

4.
本文讨论纳米精确度光学对准技术,以用于采用热固化树脂的微光学包装。为了达到一个快速固化过程,直接将微波能量作用于需要进行光学粘合的地方。然而常规微波加热技术,依赖于树脂和元件之间的高质量比。为了改进微光学包装中微量粘合剂的热吸收率,我们先将接合面抛光,再镀上金属薄层。这样一来,微波能量将被镀层快速吸收。为防止接合面过热,采用一个红外(IR)温度传感器,以监测粘合剂的温度。根据温度的高低,一个自动化的系统则可以调整微波的功率输出,以便达到相对恒定的固化温度。在快速固化过程中,预先调准好的微光系统,如光纤耦合器,将由于加热的不均匀性而不可避免地遭受干扰。为补偿这个副效应,开发了一个实时光学对准监控和反馈系统。以包装光纤耦合器为例,该系统可实时监测当粘舍剂由微波固化时器件的插入损失(IL)。我们采用的一种三维压电变换装置(PZT)可达到x-、y-和z-方向的的对准。该PZT的10nm调节精度可监测出0.004dB的IL敏感性。与常规的固化烤箱比较,该系统的微光学包装效率可提高150倍。由于采用实时监控和反馈系统,批量生产中产品的合格率也将大大改善。  相似文献   

5.
循环干涉型光纤陀螺及其光源   总被引:2,自引:3,他引:2  
介绍了一种新型光纤陀螺及其关键器件。包括:(1)循环干涉型光纤陀螺的系统方案;(2)大功率超辐射发光二极管;(3)多功能光学发收模块,它们是国内光纤陀螺研制中急待解决的关键技术。采用模块化结构和微光电机系统(MOEMS)是国外光纤陀螺的发展方向。  相似文献   

6.
从考虑驱动和粘性条件下水平矩形槽内流体服从的非线性Schrodinger方程及其孤立子解出发,得到了驱动地孤立子所做的功及孤立子总机械能的表达式,进而证明了文献(8)中提及的λ=+1型孤立子是存在的,而λ=-1型孤立子并地对应的物理实在。  相似文献   

7.
声表面波(SAW)器件以其优良的性能广泛应用于雷达、通讯和日常用品等领域。然而,随着器件工作频率的不断升高,温度对器件频率稳定性的影响也越来越严重。因此,研究声表面波器件的温度效应,并在变温情况下保持SAW器件的频率稳定性至关重要。本文采用增量型的拉格朗日方程分析受温度影响的声表面波频率漂移问题。用频率-温度系数(TCF)作为评价频率-温度行为的标准。设计了一个具有温度补偿层的双层SAW谐振器模型,降低了器件的频率-温度系数。通过尺寸优化,LiNbO3-AlN结构的SAW谐振器在25℃(参考温度)下的频率温度系数TCF接近0ppm/℃。SAW谐振器的波长为4μm,谐振频率为1214.9MHz。  相似文献   

8.
分子动力学模拟金属纳米杆   总被引:1,自引:1,他引:1  
纳米结构(包括纳米杆)的力学性能是纳米超微型器件设计的基础,分子动力学是研究纳米结构力学为的有效方法,采用EAM势模拟金属铜纳米杆在轴向压力作用下的力学行为,结果表明,当外力较小时,纳米杆受压发生纵向收缩;当外力达到某一临界值时,纳米杆发生横向弯曲(即屈曲)行为;稳定的弯曲状态能继承受外载,当外力继续增大时,纳米杆发生倾覆而失效。  相似文献   

9.
—本文在永磁电机多极化和磁场正弦化设计的基础上,采用单片跟踪型轴角数字转换器(RDC)——2S80构成了无刷直流电动机直接驱动系统,重点分析了2S80抑制转矩波动的机理。实验表明,该系统满足了精密离心机对其驱动系统大转矩、低转矩波动的要求  相似文献   

10.
闭环集成光陀螺的2π复位误差分析   总被引:1,自引:1,他引:0  
对于闭环集成光陀螺,工作环境温度的变化会引起其核心器件——集成光器件的2π电压的变化,陀螺的标度因数特性也会随之发生改变。众所周知,集成光器件的输出相移和加在集成光器件上的电压成正比,2π电压的变化是由集成光器件的调制系数变化引起的。该文量化地分析了调制系数变化引起的陀螺输出误差,算出了调制系数引起的陀螺标度因数的变化量,并与仿真结果作了比较。  相似文献   

11.
为了最大限度克服微机电陀螺的两个模态的相互耦合作用,提高微机电陀螺的综合性能指标,采用国内现有MEMS标准工艺方法,设计和制作了一种高性能单晶硅对称解耦结构的线振动陀螺。采用对称结构形式和保证陀螺驱动和检测模态振型都是弯曲振动模式,易于模态匹配;由于采用驱动模态和检测模态结构解耦方式,从微结构设计上大大降低了正交耦合误差影响,使陀螺具有输出零位小、零偏稳定性好的优点。测试结果表明:初次加工的样机,在大气中驱动和检测模态固有频率分别在2430Hz和2580Hz左右,在150Hz带宽内具有0.1~0.5(°)/s的分辨率;随着加工精度的提高和检测电路的改进,该陀螺在大气中15Hz带宽内实现0.008(°)/s的分辨率,在真空状态下,这种高性能单晶硅对称解耦结构的线振动陀螺性能会有进一步的提高。  相似文献   

12.
破片威力场的快速计算是实现战斗部对目标快速评估的关键之一,本文中分别对型面宽度为 90°、120° 和 150° 三种 D 型战斗部的破片飞散规律进行实验和数值模拟研究,考察型面宽度和起爆模式对破片威力场的影响规律。结果表明:三种结构中包含 90% 破片的方位角分别为 21.16°、23.88° 和 30.08°;偏心线起爆和双端面偏心起爆,在 20° 方位角内破片总能量分别是周向均匀战斗部中心起爆能量的 3.4 倍和 3.3 倍;基于三种典型型面的破片威力场公式,通过构建二次插值函数获得其他型面战斗部的破片分布,为D型战斗部破片威力场的快速计算提供了一种有效方法。  相似文献   

13.
形状记忆合金SMA主动驱动波纹板效率高,且性能稳定,在设计自适应智能结构上具有可观的前景。为有效利用有限元法对SMA波纹板结构进行计算分析,基于已有SMA本构模型推导了增量型SMA本构模型,据此编写了可由ABAQUS调用的用户材料(UMAT)子程序;利用该UMAT子程序对SMA主动驱动波纹板结构进行了数值模拟计算,与实验结果的对比验证了计算结果的有效性;在SMA波纹板原始结构基础上,提出了SMA短带错落布置型新结构,并进行了数值模拟分析与验证;提出了新结构的温度控制方案和提高驱动效果的措施,可为SMA驱动波纹板驱动器的设计与应用提供参考与借鉴。  相似文献   

14.
针对目前同批次驱动电路对同一光源控制效果存在差异的问题,开展器件一致性对光纤陀螺用SLD光源特性影响的研究,找到影响驱动电路一致性的关键部位,并提出解决方案,从而规范驱动电路制作过程。理论分析结果表明:造成温控电路差异的因素由大到小依次是惠斯通桥两臂电阻偏差、热敏电阻与同臂电阻偏差、正/负电源精度、运算放大器输入失调电压,以及积分电路的运放精度;造成恒流源电路差异的因素主要是指示器误差、驱动电流漂移误差和恒流源器件选配误差;通过采取元器件配对、调试、更换高精度器件等措施,可消除或大幅降低上述电路差异。试验结果证明,按照理论规范生产的驱动电路板一致性显著提高,可达到同类进口驱动电路的水平。  相似文献   

15.
细胞培养液在微流控生物反应器中受到外界物理场(如压力梯度或者电场)作用流动而产生流体剪应力,并进一步刺激种子细胞调控其内部基因的表达,从而促进细胞的分化和生长,这个过程在自然生命组织内的微管中亦是如此。考虑到细胞培养微腔隙中液体流动行为很难实验量化测定,理论建模分析是目前可行的研究手段。因此建立了矩形截面的细胞微流控培养腔理论模型,将外部的物理驱动场(压力梯度与电场)与培养腔内液体的流速、切应力和流率联系起来,分别得到了压力梯度驱动(Pressure gradient driven,PGD)、电场驱动(Electric field driven,EFD)及力-电协同驱动(Pressure-electricity synergic driven,P-ESD)三种驱动方式下的液体流动理论模型。结果表明该理论模型与现有的实验结果基本一致,具体地:力-电协同作用下的解答为压力梯度驱动和电场驱动结果的叠加。细胞培养腔内的流体流速、剪应力及流率幅值均正比于外部物理场强幅值,但随着压力梯度驱动载荷频率的增大而减小,随着电场驱动频率的变化不明显。在压力梯度驱动作用下,细胞贴壁处的切应力随着腔高的增大而线性增大,流率则随着腔高的增大而非线性增大,而电场驱动下的结果不受腔高的影响。生理范围内的温度场变化对压力和电场驱动的结果影响不大。另外,在引起细胞响应的流体切应力水平,电场驱动能提供较大的切应力幅值而压力梯度驱动则能提供较大的流率幅值。该理论模型的建立为细胞微流控生物反应器实验系统的设计及参数优化提供理论参考,同时也为力-电刺激细胞生长、分化机理的研究的提供基础。   相似文献   

16.
为了提高科氏振动陀螺仪驱动模态的控制精度与稳定性,设计了基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统。利用基于直接数字频率合成器(DDS)算法的数字锁相环实现对陀螺谐振频率和相位的跟踪,采用数字自动增益模块(AGC)实现驱动幅值的稳定控制。实验结果表明,通过DDS算法实现的闭环驱动系统具有更高的控制精度,驱动幅值变化的均方差缩小到0.0011 mV,幅度稳定性为183 ppm,谐振频率变化的均方差缩减至0.07 Hz,频率稳定性为3.48 ppm,陀螺仪驱动模态的幅值和频率控制精度得到了提高。  相似文献   

17.
李力 《实验力学》2007,22(3):285-294
随着铜互连以及low-k电介质在超大规模集成电路中地广泛使用,low-k电介质的机械完整性及其对互连可靠性变得更加重要。影响介电膜的机械完整性和互连可靠性的因素包括介电膜的工艺制程,芯片与封装材料的相互影响,以及环境温度和湿度的影响。本文研究集中于了解环境温度和湿度对塑封硅器件中介电薄膜的可靠性影响。采用快速温度和湿度实验条件,对塑封硅器件中介电薄膜受水分和温度损伤的敏感性进行了分析。运用商业有限元(FEA)分析软件,对水分在塑封材料和硅器件中的扩散过程进行了建模及仔细分析。并对硅器件周边密封圈的防水分扩散效力进行了研究。通过这一系列实验与分析,对塑封硅器件中介电薄膜的温湿效应有了完整地了解,并提出和建立了相关的物理模型和经验公式。运用这物理模型和经验公式可对在各种使用环境温度和湿度条件下,塑封硅器件中介电薄膜的可靠性进行评估及分析。  相似文献   

18.
现代工业的发展对材料性能和结构尺寸提出更高的要求,机电器件的设计越来越偏向于小型化、高频化和智能化.最新研究成果表明,磁电耦合复合材料不仅能够以较强的磁电转换效率实现磁能、机械能和电能之间的相互转换,还可以避免结构与机械驱动源的直接接触,实现非接触调控,这对于制备多功能微纳米器件具有重要意义.文章基于Mindlin所发展的多物理场结构理论分析方法,结合宏观压磁理论和偶应力挠曲电理论,研究由单个挠曲电电介质层和两个对称压磁层构成的三明治型夹层板在外部横向磁场驱动下的动态力电耦合响应,其中通过引入曲率将经典力电耦合理论拓宽到中心对称材料.夹层板在正弦型全局磁场和均布局部磁场驱动下的动态数值算例表明:位移和电势具有一定的频率依赖性,当激振频率达到固有频率时,振幅达到最大值;此外,对称式驱动压磁层分布方式趋于提高多层复合板的力电耦合性能.文章理论模型和研究结果可为磁控机电器件的优化设计提供新的改进思路.  相似文献   

19.
采用传统分离式Hopkinson压杆进行M型试样的动态拉伸实验,可避免试样与杆的连接问题,但该方法并未得到发展和验证。本文中,采用有限元数值分析和实验方法,对M型试样动态拉伸实验进行分析和改进。结果表明:(1)改进的封闭M型试样,可以增强试样整体刚度,有效减少试样畸变引起的附加弯矩对拉伸标段的影响,方便通过Hopkinson压杆加载实现一维拉伸变形;(2)采用试样刚度系数修正法,可消除M型试样整体结构的弹性变形对测试的影响,精确获得试样拉伸标段的塑性应变;(3)高加载率下,建议采用波形整器加载,可显著减少试样结构引起的载荷震荡现象、改善两端的应力平衡,获得准确的动态拉伸应力应变曲线,实现5 900 s?1甚至更高应变率下的动态拉伸实验。研究方法可为M型试样拉伸实验设计和应用提供参考。  相似文献   

20.
介绍了采用CPLD器件开发的导弹用惯性测量单元(IMU)模拟器的设计原理及其实现方法。该模拟器采用软硬件相结合的方式,可模拟某型真实惯性测量单元(IMU)的接口与输出信号。通过软件控制硬件输出的脉冲个数,可模拟真实惯性测量单元在静态和动态工作时的状态。该模拟器具有硬件体积小、成本低、可连续长时使用等特点和可轻松修改模拟器硬件电路的优点。该模拟器在某型号空空导弹惯导系统仿真实验中已经得到实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号