首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
力学   8篇
物理学   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
细胞培养液在微流控生物反应器中受到外界物理场(如压力梯度或者电场)作用流动而产生流体剪应力,并进一步刺激种子细胞调控其内部基因的表达,从而促进细胞的分化和生长,这个过程在自然生命组织内的微管中亦是如此.考虑到细胞培养微腔隙中液体流动行为很难实验量化测定,理论建模分析是目前可行的研究手段.因此建立了矩形截面的细胞微流控培养腔理论模型,将外部的物理驱动场(压力梯度与电场)与培养腔内液体的流速、切应力和流率联系起来,分别得到了压力梯度驱动(pressure gradient driven,PGD)、电场驱动(electric field driven,EFD)及力–电协同驱动(pressure-electricity synergic driven,P-ESD)三种驱动方式下的液体流动理论模型.结果表明该理论模型与现有的实验结果基本一致,即力–电协同作用下的解答为压力梯度驱动和电场驱动结果的叠加.细胞培养腔内的流体流速、剪应力及流率幅值均正比于外部物理场强幅值,但随着压力梯度驱动载荷频率的增大而减小,随着电场驱动频率的变化不明显.在压力梯度驱动作用下,细胞贴壁处的切应力随着腔高的增大而线性增大,流率则随着腔高的增大而非线性增大,而电场驱动下的结果不受腔高的影响.生理范围内的温度场变化对压力和电场驱动的结果影响不大.另外,在引起细胞响应的流体切应力水平,电场驱动能提供较大的切应力幅值而压力梯度驱动则能提供较大的流率幅值.该理论模型的建立为细胞微流控生物反应器实验系统的设计及参数优化提供理论参考,同时也为力–电刺激细胞生长、分化机理的研究的提供基础.  相似文献   
2.
3.
骨组织受力变形后其内部液体就会流动,同时在其微观结构——骨单元壁中扩散,并进一步产生一系列与骨液流动相关的物理效应,如流体剪切应力、流动电位等,这些物理效应被细胞感知并做出破骨或成骨等反应,来使骨适应外部载荷环境.鉴于骨组织产生的内部液体流动很难实验测定,理论模拟是目前的主要研究手段.基于骨单元的多孔弹性性质建立了骨小管内部液体的流动模型,该模型将骨单元所受的外部载荷与骨小管内部液体的压力、流速、流量和切应力联系起来,并进一步可以研究其力传导与力电传导机制.骨小管模型的建立分别基于中空和考虑哈弗液体的骨单元模型,并考虑了骨单元外壁的弹性约束和刚性位移约束两种边界条件.最终得到骨单元在外部轴向载荷作用下,骨小管内部液体的流量及流体切应力的解析解.结果表明:骨小管中的液体流量与流体切应力都正比于应变载荷幅值和频率,并由载荷的应变率决定.因此应变率可以作为控制流量和流体切应力的一种生理载荷因素.流量随着骨小管半径的增大而非线性增大,而流体切应力则随着骨小管半径的增大而线性增大.此外,在相同的载荷下,含哈弗液体的骨单元的模型中,骨小管中液体的流量和切应力均大于中空骨单元模型.  相似文献   
4.
骨组织内的流体流动不仅为骨细胞的生存提供了充足营养供应及代谢物排放途径,也在骨重建过程中起到关键作用.为了更精确地阐明骨内液体流动的具体形式,这项研究利用骨陷窝-骨细胞的密度,形态和方向等参数来计算骨单元内液体的流动行为.首先,计算出不同形状和方向的骨陷窝周围骨小管的数量及分布情况,其次利用算出的参数以及骨组织其他微结构数据来估计骨组织的渗透率和孔隙率等参数,最后根据计算所得的参数建立骨单元的多孔弹性力学有限元模型,并分析了在轴向位移载荷作用下骨陷窝形状和方向对骨单元内液体渗流行为的影响.结果表明,在所研究的参数范围内不同骨单元模型的相同区域上,骨陷窝形状影响下的骨单元最大压力和流速比最小的分别增加了86%和18%;骨陷窝方向影响下的最大压力和流速比最小的分别增加了125%和56%.伸长形骨陷窝对单个骨单元局部压力的影响远大于扁平形和圆形骨陷窝.骨陷窝从0°绕x轴旋转到90°过程中压力是逐渐降低的,且30°,45°和60°的模型对骨单元内局部流速有显著影响.该模型表示骨陷窝的形状和方向以及骨小管的三维分布对骨单元内液体压力和流速幅值及沿不同方向的流动差异有显著的影响.这项研究将有助于精确量化描述骨内液体的流体行为.  相似文献   
5.
细胞处于复杂的生理环境之下,附着在细胞表面的初级纤毛被认为是重要的力学信号传感器,其与细胞的代谢、发育、分裂和增殖等生理活动密切相关.为了研究细胞及其初级纤毛在微流体环境下的力传导行为,本文建立了力-电协同驱动下的矩形微流控通道和含有多孔黏弹性属性的贴壁细胞有限元模型系统.考察了细胞的细胞质和细胞核在振荡层流下的应力、应变、孔隙压力和孔隙流速等力学信号响应,量化研究了初级纤毛作为细胞独特的力学感受器的生物力学行为. 结果表明:细胞在振荡层流下的力学响应表现出和外加力-电驱动载荷相同的震荡规律.渗透率是细胞多孔弹性力学行为的主要影响因素. 初级纤毛是细胞主要的力学感受器,细胞可以通过纤毛长度和直径调节其力学感受敏感性(应力影响区域),随着初级纤毛长度的增大, 其纤毛挠曲刚度减小, 但是敏感性增大.模型的建立为进一步研究微流体剪切作用下的细胞生长、分化等微观机理提供基础,同时也为检测细胞微结构器(纤毛等蛋白链)的力学性能提供了理论技术支持.   相似文献   
6.
骨组织内的流体流动不仅为骨细胞的生存提供了充足营养供应及代谢物排放途径,也在骨重建过程中起到关键作用. 为了更精确地阐明骨内液体流动的具体形式,这项研究利用骨陷窝-骨细胞的密度,形态和方向等参数来计算骨单元内液体的流动行为. 首先,计算出不同形状和方向的骨陷窝周围骨小管的数量及分布情况,其次利用算出的参数以及骨组织其他微结构数据来估计骨组织的渗透率和孔隙率等参数,最后根据计算所得的参数建立骨单元的多孔弹性力学有限元模型,并分析了在轴向位移载荷作用下骨陷窝形状和方向对骨单元内液体渗流行为的影响. 结果表明,在所研究的参数范围内不同骨单元模型的相同区域上,骨陷窝形状影响下的骨单元最大压力和流速比最小的分别增加了86%和18%;骨陷窝方向影响下的最大压力和流速比最小的分别增加了125%和56%. 伸长形骨陷窝对单个骨单元局部压力的影响远大于扁平形和圆形骨陷窝. 骨陷窝从0°绕$x$轴旋转到90°过程中压力是逐渐降低的,且30°,45°和60°的模型对骨单元内局部流速有显著影响. 该模型表示骨陷窝的形状和方向以及骨小管的三维分布对骨单元内液体压力和流速幅值及沿不同方向的流动差异有显著的影响. 这项研究将有助于精确量化描述骨内液体的流体行为.   相似文献   
7.
武晓刚  陈维毅 《力学进展》2010,40(5):563-573
骨组织在受到应力作用(正常的生理活动)变形后在骨内产生电位的现象称为骨的力–电效应,它主要包括压电效应和动电效应.研究骨在动态过程中产生的电位幅值和分布特点,不仅是了解电刺激骨生长机理的必要步骤,也是实现骨治疗和重建的生理基础.它一方面是用数学方法来描述外力作用下其电位大小与应力、应变、应变率及加载速率的关系,另一方面是考察生理环境(pH值、离子浓度、温度、湿度等)对电位的影响.首先对力–电理论进行了简单的介绍,重点总结了其研究方法,包括理论模型和分离式霍普金生杆冲击、弯曲变形及缓冲液中的动态测试等实验方法.此外,对骨替代材料和牙本质领域的力–电效应研究也进行了一定的综述.  相似文献   
8.
An extended and reasonable stress boundary condition at an osteon exterior wall is presented to solve the model proposed by Rémond and Naili. The obtained pressure and fluid velocity solutions are used to investigate the osteonal poroelastic behaviors. The following results are obtained. (i) Both the fluid pressure and the velocity amplitudes are proportional to the strain amplitude and the loading frequency. (ii) In the physiological loading state, the key role governing the poroelastic behaviors of the osteon is the strain rate. (iii) At the osteon scale, the pressure is strongly affected by the permeability variations, whereas the fluid velocity is not.  相似文献   
9.
细胞培养液在微流控生物反应器中受到外界物理场(如压力梯度或者电场)作用流动而产生流体剪应力,并进一步刺激种子细胞调控其内部基因的表达,从而促进细胞的分化和生长,这个过程在自然生命组织内的微管中亦是如此。考虑到细胞培养微腔隙中液体流动行为很难实验量化测定,理论建模分析是目前可行的研究手段。因此建立了矩形截面的细胞微流控培养腔理论模型,将外部的物理驱动场(压力梯度与电场)与培养腔内液体的流速、切应力和流率联系起来,分别得到了压力梯度驱动(Pressure gradient driven,PGD)、电场驱动(Electric field driven,EFD)及力-电协同驱动(Pressure-electricity synergic driven,P-ESD)三种驱动方式下的液体流动理论模型。结果表明该理论模型与现有的实验结果基本一致,具体地:力-电协同作用下的解答为压力梯度驱动和电场驱动结果的叠加。细胞培养腔内的流体流速、剪应力及流率幅值均正比于外部物理场强幅值,但随着压力梯度驱动载荷频率的增大而减小,随着电场驱动频率的变化不明显。在压力梯度驱动作用下,细胞贴壁处的切应力随着腔高的增大而线性增大,流率则随着腔高的增大而非线性增大,而电场驱动下的结果不受腔高的影响。生理范围内的温度场变化对压力和电场驱动的结果影响不大。另外,在引起细胞响应的流体切应力水平,电场驱动能提供较大的切应力幅值而压力梯度驱动则能提供较大的流率幅值。该理论模型的建立为细胞微流控生物反应器实验系统的设计及参数优化提供理论参考,同时也为力-电刺激细胞生长、分化机理的研究的提供基础。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号