首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Thin composite films consisting of a matrix with embedded particles are currently being developed both as hard, wear resistant coatings and as functional surfaces. The effect of stiff particles in the film are studied for systems where the film is under residual tensile stresses. The particles, when they are fully bonded to the matrix, increase the stiffness of the composite film. In cases where the particles debond from the matrix material, the stiffness of the composite film decreases. The conditions under which the debonding process is stable are studied. For systems properly designed, a controlled debonding process of the particles can thus be used to reduce the stress levels in composite film lowering the risk for delamination of the composite film from the substrate as well as the risk of through cracks in the film. The work includes finite element based unit cell calculations of interface debonding between spherical particles and the film, and the release of residual stresses following this. The three dimensional unit cell calculations assume a periodic distribution of particles in the plane parallel to the substrate interface with equi-biaxial tension and periodicity with zero overall stress perpendicular to the substrate interface.  相似文献   

2.
In this paper, we present and analyze a variational model in nonlinear elasticity that allows for cavitation and fracture. The main idea in unifying the theories of cavitation and fracture is to regard both cavities and cracks as phenomena of the creation of a new surface. Accordingly, we define a functional that measures the area of the created surface. This functional has relationships with the theory of Cartesian currents. We show that the boundedness of that functional implies sequential weak continuity of the determinant of the deformation gradient, and that the weak limit of one-to-one almost everywhere deformations is also one-to-one almost everywhere. We then use these results to obtain the existence of minimizers of variational models that incorporate elastic energy and this created surface energy, taking into account orientation-preserving and non-interpenetration conditions.  相似文献   

3.
When a tensile strain is applied to a film supported on a compliant substrate, a pattern of parallel cracks can channel through both the film and substrate. A linear-elastic fracture-mechanics model for the phenomenon is presented to extend earlier analyses in which cracking was limited to the film. It is shown how failure of the substrate reduces the critical strain required to initiate fracture of the film. This effect is more pronounced for relatively tough films. However, there is a critical ratio of the film to substrate toughness above which stable cracks do not form in response to an applied load. Instead, catastrophic failure of the substrate occurs simultaneously with the propagation of a single channel crack. This critical toughness ratio increases with the modulus mismatch between the film and the substrate, so that periodic crack patterns are more likely to be observed with relatively stiff films. With relatively low values of modulus mismatch, even a film that is more brittle than the substrate can cause catastrophic failure of the substrate. Below the critical toughness ratio, there is a regime in which stable crack arrays can be formed in the film and substrate. The depth of these arrays increases, while the spacing decreases, as the strain is increased. Eventually, the crack array can become deep enough to cause substrate failure.  相似文献   

4.
We address the problem of fracture in homogenous linear elastic thin films using a variational model. We restrict our attention to quasi-static problems assuming that kinetic effects are minimal. We focus on out-of-plane displacement of the film and investigate the effect of bending on fracture. Our analysis is based on a two-dimensional model where the thickness of the film does not need to be resolved. We derive this model through a formal asymptotic analysis. We present numerical simulations in a highly idealized setting for the purpose of verification, as well as more realistic micro-indentation experiments.  相似文献   

5.
When a thin film moderately adherent to a substrate is subjected to residual stress, the cooperation between fracture and delamination leads to unusual fracture patterns, such as spirals, alleys of crescents and various types of strips, all characterized by a robust characteristic length scale. We focus on the propagation of a duo of cracks: two fractures in the film connected by a delamination front and progressively detaching a strip. We show experimentally that the system selects an equilibrium width on the order of 25 times the thickness of the coating and independent of both fracture and adhesion energies. We investigate numerically the selection of the width and the condition for propagation by considering Griffith's criterion and the principle of local symmetry. In addition, we propose a simplified model based on the criterion of maximum of energy release rate, which provides insights of the physical mechanisms leading to these regular patterns, and predicts the effect of material properties on the selected width of the detaching strip.  相似文献   

6.
The effect of thermal loads on the debonding mechanisms in beams strengthened with externally bonded composite materials is analytically investigated. The analytical approach adopts a high-order stress analysis model and a fracture mechanics model that uses the concept of the energy release rate through the thermo-mechanical form of the J-integral. The two models are combined to synthesize the relation between the energy release rate, the mechanical loads, the thermal loads, and the interfacial crack length simulating the thermo-mechanical debonding process. The model is supported through comparison with experimental results taken from the literature. The comparison quantifies and explains various phenomena observed in the experiments and mainly the non-monotonic dependency of the debonding failure load on the temperature. The impact of the temperature on the interfacial stresses and on the stability of the debonding process is also studied. Finally, the effect of an uniform thermal load on the debonding behavior of a strengthened beam is studied revealing the impact of the thermal load on the debonding stability and strength characteristics.  相似文献   

7.
We perform a series of molecular dynamics simulations of a subtractive cold-welding patterning process. The effects of film thickness and work of adhesion between the thin film and substrate are examined. For small works of adhesion, the film elastically debonds from the substrate before the onset of plastic deformation inside the film during stamp retraction. A simple model is proposed to describe the debonding and deformation of the film. The model provides an analytical framework that describes the playoff between adhesion, yield strength, and film thickness in determining the debond length of the film induced by stamp retraction.  相似文献   

8.
This paper focuses on the analytical and numerical modeling of the interface between a rigid substrate with simple constant curvature and a thin bonded plate. The interfacial behavior is modeled by independent cohesive laws in the normal and tangential directions, coupled with a mixed-mode fracture criterion. The newly developed analytical model determines the interfacial shear and normal stress distributions as functions of the substrate curvature, during the various behavioral stages of the interface prior to the initiation of debonding. The model is also able to predict the debonding load and the effective bond length. In the numerical model the interface is modeled by zero-thickness node-to-segment contact elements, in which both the geometrical relationships between the nodes of the discretized problem and the interface constitutive laws are suitably defined. Numerical results and comparisons between the predictions of the two models are presented.  相似文献   

9.
杨育梅  李志鹏 《力学学报》2021,53(5):1345-1354
高温超导带材因其高载流z能力、低交流损耗等优点, 在超导领域得到了广泛的关注, 然而在带材的应用中出现的力学问题严重阻碍了其应用. 基于此, 本文分析了受外部磁场激励YBCO高温超导带材在超导层局部脱黏后的电磁力学响应. 基于超导临界态Bean模型和弹性力学平面应变方法, 给出了超导薄膜内正应力与基底界面处切应力相关联的控制方程, 基于数值方法研究了超导薄膜内的正应力及基底界面处的切应力随外部磁场的变化规律. 结果显示: 在脱黏区域附近, 超导薄膜内的正应力和基底$\!-\!$薄膜界面处的切应力急剧增大, 该正应力及切应力极易引起超导层的进一步脱黏. 同时, 剪切应力在结构边缘处出现极值. 基底材料的属性, 特别是杨氏模量对结构内的应力影响显著, 在软基底材料结构中, 超导薄膜内将出现较大的正应力, 而基底材料较硬时, 在基底$\!-\!$薄膜界面处将出现较大的剪切应力, 这些因素均会引起超导涂层结构的力学及电学性能的退化. 本文研究可望为超导带材的加工制备及脱黏的处理提供一定的理论指引.   相似文献   

10.
A cohesive interface modeling approach to debonding analysis of adhesively bonded interface between two balanced adjacent flexural cracks in conventional material (e.g., concrete or wood) beams strengthened with externally bonded FRP plates is presented. Both the strengthened beam and strengthening FRP are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin adhesive layer. A bi-linear cohesive model, which is commonly used in the literature, is adopted to characterize the stress-deformation relationship of the FRP–concrete interface. Completely different from the single-lap or double-shear pull models in which only the axial pull force is considered, the present model takes the couple moment and transverse shear forces in both the substrates into account to study the second type of intermediate crack-induced debonding (IC debonding) along the interface. The whole debonding process of the FRP–concrete interface is discussed in detail, and closed-form solutions of bond slip, interface shear stress, and axial force of FRP in different stages are obtained. A rotational spring model is introduced at locations of the two adjacent flexural cracks to model the local flexibility of the cracked concrete beam, with which the relationship between the local bond slip and externally applied load is established and the real bond failure process of the FRP-plated concrete beam with the increasing of the externally applied load is revealed. Parametric studies are further conducted to investigate the effect of the thickness of adhesive layer on the bond behavior of FRP–concrete interface. The present closed-form solution and analysis on the local bond slip versus applied load relationship for the second type of IC debonding along the interface shed light on the bond failure process of structures externally strengthened with FRP composite plates and can be used effectively and efficiently to predict ductility and ultimate load of FRP-strengthened structures.  相似文献   

11.
The concept of functionally graded material (FGM) is actively explored in coating design for the purpose of eliminating the mismatch of material properties at the coating/substrate interface, typical for conventional coatings, which can lead to cracking, debonding and eventual functional failure of the coating. In this paper, an FGM coating/substrate system of finite thickness subjected to transverse loading is analysed within the context of three-dimensional elasticity theory. The Young’s modulus of the coating is assumed to vary exponentially through the thickness, and the Poisson’s ratio is assumed to be constant. A comparative study of FGM versus homogeneous coating is conducted, and the dependence of stress and displacement fields in the coating substrate/system on the type of coating, geometry and loading is examined and discussed.  相似文献   

12.
We present a family of phase-field models for fracture in piezoelectric and ferroelectric materials. These models couple a variational formulation of brittle fracture with, respectively, (1) the linear theory of piezoelectricity, and (2) a Ginzburg–Landau model of the ferroelectric microstructure to address the full complexity of the fracture phenomenon in these materials. In these models, both the cracks and the ferroelectric domain walls are represented in a diffuse way by phase-fields. The main challenge addressed here is encoding various electromechanical crack models (introduced as crack-face boundary conditions in sharp models) into the phase-field framework. The proposed models are verified through comparisons with the corresponding sharp-crack models. We also perform two dimensional finite element simulations to demonstrate the effect of the different crack-face conditions, the electromechanical loading and the media filling the crack gap on the crack propagation and the microstructure evolution. Salient features of the results are compared with experiments.  相似文献   

13.
This work aims at understanding the effect of particle–matrix interfacial debonding on the tensile response of syntactic foams. The problem of a single hollow inclusion with spherical-cap cracks embedded in a dissimilar matrix material is studied. Degradation of elastic modulus, cavity formation in the proximity of debonded regions, stress localization phenomena in the inclusion, debonding energetics, and crack kinking are studied for a broad range of inclusion wall thickness and debonding extent. A series solution based on the Galerkin method is proposed and validated through comparison with findings from boundary element and finite element methods. Results are specialized to glass particle-vinyl ester matrix systems widely used in marine structural applications. The insight gained into the role of particle–matrix debonding extent and inclusion wall thickness is useful in understanding the possible failure mechanisms of syntactic foams under tensile and flexural loading conditions and in tailoring their parameters for specific applications.  相似文献   

14.
This paper presents an analysis of a single vertical crack and periodically distributed vertical cracks in an epitaxial film on a semi-infinite substrate where the cracks penetrate into the substrate. The film and substrate materials have different anisotropic elastic constants, necessitating Stroh formalism in the analysis. The misfit strain due to the lattice mismatch between the film and the substrate serves as the driving force for crack formation. The solution for a dislocation in an anisotropic trimaterial is used as a Green function, so that the cracks are modeled as the continuous distributions of dislocations to yield the singular integral equations of Cauchy-type. The Gauss–Chebyshev quadrature formula is adopted to solve the singular integral equations numerically. Energy arguments provide the critical condition for crack formation, at which the cracks are energetically favorable configurations, in terms of the ratio of the penetration depth into the substrate to the film thickness, the ratio of the spacing of the periodic cracks to the film thickness, and the generalized Dundurs parameters between the film and substrate materials.  相似文献   

15.
Delayed fracture due to debonding can be observed in many unidirectional fibre-reinforced composites when the fibre/matrix interface experiences creep. The aim of this work is to describe such a phenomenon within the recently proposed modeling framework of transverse isotropy that allows for a neat decomposition of the mechanical behavior into fibre-directional, transverse, and pure shear parts. Specifically, debonding is here chosen to be governed by the tension transverse to the fibres. One can then speak of a mode-I debonding if use is made of the terminology adopted in fracture mechanics. On another hand, the time-dependent response is attributed to the matrix constituent. As the role of this latter is to deform and support stresses primarily in shear, a viscoelastic behavior is introduced that affects solely the pure shear part of the behavior. We show that both characteristics can be easily embedded into the aforementioned formulation. Among others, the occurrence of tertiary creep is made possible to predict. It is otherwise found that the predicted debonding path always propagates along the direction of the fibres in agreement with many experimental observations found in the literature. On the numerical side, the algorithmic treatment of debonding is independent of the one for viscoelasticity. This renders the implementation within the context of the finite element method very easy.  相似文献   

16.
Hard wear resistant coatings that are subjected to contact loading sometimes fail because the coating delaminates from the substrate. In this report, systematic finite element computations are used to model coating delamination under contact loading. The coating and substrate are idealized as elastic and elastic–plastic solids, respectively. The interface between coating and substrate is represented using a cohesive zone law, which can be characterized by its strength and fracture toughness. The system is loaded by an axisymmetric, frictionless spherical indenter. We observe two failure modes: shear cracks may nucleate just outside the contact area if the indentation depth or load exceeds a critical value; in addition, tensile cracks may nucleate at the center of the contact when the indenter is subsequently removed from the surface. Delamination mechanism maps are constructed which show the critical indentation depth and force required to initiate both shear and tensile cracks, as functions of relevant material properties. The fictitious viscosity technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces allows us to explore a wider parametric space that a conventional cohesive model cannot handle. Numerical results have also been compared to analytical analyses of asymptotic limits using plate bending and membrane stretching theories, thus providing guidelines for interpreting the simulation results.  相似文献   

17.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete. Debonding along the FRP–concrete interface can lead to premature failure of the structure. In this study, a bond-slip model is established to study the interface debonding induced by a flexural crack in a FRP-plated concrete beam. The reinforced concrete beam and FRP plate are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin layer of FRP–concrete interface. The interface layer is essentially modeled as a large fracture processing zone of which the stress–deformation relationship is described by a nonlinear bond-slip model. Three different bond-slip models (bi-linear, triangular and linear-damaging) are used. By dividing the debonding process into several stages, governing equations of interfacial shear and normal stresses are obtained. Closed-form solutions are then obtained for the interfacial shear and normal stresses and the deflection of the beam in each stage of debonding. In such a way, the proposed model unifies the whole debonding process, including elastic deformation, debonding initiation and growth, into one model. With such a superior feature, the proposed model provides an efficient and effective analytical tool to study FRP–concrete interface debonding.  相似文献   

18.
Deposition processes control the properties of thin films; they can also introduce high residual stresses, which can be relieved by delamination and fracture. Tungsten films with high 1–2 GPa compressive residual stresses were sputter deposited on top of thin (below 100 nm) copper and diamond-like carbon (DLC) films. Highly stressed films store large amounts of strain energy. When the strain energy release rate exceeds the films' interfacial toughness, delamination occurs. Compressive residual stresses cause film buckling and debonding, forming open channels. Profiles of the buckling delaminations were used to calculate the films' interfacial toughness and then were compared to the adhesion results obtained from the superlayer indentation test. Tests were conducted in both dry and wet environments and a significant drop in film adhesion, up to 100 times was noticed due to the presence of moisture at the film/substrate interface.  相似文献   

19.
This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks.  相似文献   

20.
A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号