首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
微滴喷射增材制造技术中沉积微滴的大小与均匀性是影响成型件质量的关键因素.本文设计了一种用于生成均匀微滴的压电驱动式微滴喷射装置,通过压电材料带动柔性膜片振动,将液体从喷嘴中喷出生成微滴,采用数值模拟和实验相结合的方法,研究了不同控制参数下膜片振幅及其对生成微滴尺寸和均匀性的影响.研究结果表明:膜片振幅大小受到驱动电压和压电频率的共同影响,压电频率是导致膜片中心点振幅实验测量值小于理论计算值的主要原因,膜片振动会导致喷嘴内部压力发生变化从而影响微滴生成尺寸.在相同驱动电压条件下,压电频率为10 Hz时存在压电膜片振幅最大值.随着膜片振幅的增大,喷孔处液体速度和液柱长度增大到临界值时可以生成微滴,当喷孔处的液柱长度超过临界值时,会形成卫星液滴.当膜片振幅区间在30μm~42μm可以稳定生成微滴,生成最小微滴尺寸为339.8μm,直径最大变化率为0.29%,相邻两微滴间距最大变化率为2.67%,生成微滴的尺寸及均匀性较好.研究结果有助于提高压电式微滴喷射装置的液滴生成质量.  相似文献   

2.
生物芯片压电微流体泵液-固耦合系统模态分析   总被引:3,自引:0,他引:3  
对压电微流体泵粘性流体周期流动进行厚度积分平均近似,得到包含粘性的,非线性浅水波动方程,并采用有限元法得到微泵液体压强矩阵方程.液体压强矩阵方程和压电硅片振动有限元方程耦合,得到一个包含微泵进出口扩散管的液-固耦合系统振动方程.液-固耦合系统的模态分析结果表明,做泵液-固耦合系统的自然频率比不耦合的硅片振动自然频率低很多.随着微泵厚度的减少,液体附加质量和粘性阻尼对耦合系统自然频率的影响更加明显.同时发现,对应的压电片振型函数在液-固耦合前后没有明显变化,还给出硅片-阶模态的振幅-频率特征曲线,对薄型无阀压电微流体泵,浅水波模型合理地表达了微泵液体流动和压电硅片振动的相互作用,以及液体附加质量和粘性阻尼对微泵液-固耦合系统动力特征的影响。  相似文献   

3.
砂-膨润土混合屏障材料渗透性影响因素研究   总被引:1,自引:0,他引:1  
建立了一个新的结构-尾流振子耦合模型. 流场近尾迹动力学特征被模化为非线性阻尼 振子,采用van der Pol方程描述. 以控制体中结构与近尾迹流体间受力互为反作 用关系来实现流固耦合. 采用该模型进行了二维结构涡激振动计算,得到了合理的 振幅随来流流速的变化规律和共振幅值,并正确地预计了共振振幅值$A_{\max}^\ast$ 随着质量阻尼参数$\left( {m^\ast + C_A } \right)\zeta $的变化规律,给出了预测$A_{\max }^\ast $值的拟合公式. 采用该模型计算了三维柔性结构在均匀来流和简谐波形来流作用下的VIV 响应. 结构在均匀来流作用下振动呈现由驻波向行波的变化过程, 并最后稳定为行波振动形态. 在简谐波形来流作用下,结构呈现混合振动形态,幅值随时间呈周期变化.  相似文献   

4.
介绍了一种组装式微流控系统制备单、双重包裹微液滴的方法。微系统中用三通接头构成T型微流体通道,使得分散相在连续相强烈的剪切力和压力差作用下断裂形成单个微米级液滴。在制备单个微液滴基础上,用毛细管将两个三通接头串联,通过调控三相流量,可产生双重包裹液滴。结合实验结果,分析了流体粘度比对液滴大小的影响,并得出液滴的尺寸与流量比之间的关系式,为制备不同尺寸的液滴提供了参考依据。对制备的样品进行统计分析,结果显示,液滴的多分散性指数均小于3.2%,表明微液滴的高度均匀性。此外,通过调节三相液体的流量不仅可以控制内外层液滴的大小,还可以调节内层包裹液滴的个数。本文提出的制备方法,设备组装拆卸简便,不需表面亲疏水性处理,装置利用率高,产生的单、双重包裹微液滴可满足高通量的测量分析要求。  相似文献   

5.
基于惯性-摩擦驱动的球基微驱动器逆转现象分析   总被引:6,自引:0,他引:6  
在压电陶瓷等效电学模型的基础上,结合外加驱动信号波形分析了基于惯性-摩擦驱动的球基微驱动器在工作过程中金属球产生逆转现象的原因,建立了金属球的转速及位移模型,采用快速放电回路和加速压电陶瓷放电的方法减小金属球的逆转位移及振动;利用压电陶瓷管作为微驱动元件,设计了基于惯性-摩擦驱动的球基微驱动器,并采用不同频率的三角波信号对所设计微驱动器进行试验测试.结果表明:驱动信号频率越高,微驱动器的振动现象越明显;当驱动信号频率接近、等于或大于微驱动元件(压电陶瓷管)的固有放电周期时,金属球出现无规律运动,导致微驱动器失效;根据1 Hz低频信号时的试验结果与计算所得结果基本吻合,证明了所建立的逆转理论模型的合理性.  相似文献   

6.
宋芳  林黎明  凌国灿 《力学学报》2010,42(3):357-365
建立了一个新的结构-尾流振子耦合模型. 流场近尾迹动力学特征被模化为非线性阻尼振子,采用van der Pol方程描述. 以控制体中结构与近尾迹流体间受力互为反作用关系来实现流固耦合. 采用该模型进行了二维结构涡激振动计算,得到了合理的振幅随来流流速的变化规律和共振幅值,并正确地预计了共振振幅值$A_{\max}^\ast$随着质量阻尼参数$\left( {m^\ast + C_A } \right)\zeta$的变化规律,给出了预测$A_{\max }^\ast$值的拟合公式. 采用该模型计算了三维柔性结构在均匀来流和简谐波形来流作用下的VIV响应. 结构在均匀来流作用下振动呈现由驻波向行波的变化过程, 并最后稳定为行波振动形态.在简谐波形来流作用下,结构呈现混合振动形态,幅值随时间呈周期变化.   相似文献   

7.
阎凯  宁智  吕明  孙春华  付娟  李元绪 《力学学报》2016,48(3):566-575
压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.   相似文献   

8.
《力学学报》2009,41(1):8
根据考虑了液体可压缩性的改进的微气泡动力学方程,采用改进的初始半径对单泡超声空化现象进行了数值计算研究. 结果表明,微气泡振动对一些参量很敏感:微气泡振动半径与初始半径的比值随振动频率的增大而减小;提高声场声压会加剧气泡崩塌程度,但过高的声压又不能使微气泡崩塌;微气泡崩塌速率随气泡初始半径的增加而增大,在一定范围内能保证空化泡稳定振动,在初始半径为1.6\,$\mu$m 处空化程度最强,如果继续增大初始半径则空化程度减弱、甚至消失;微气泡崩塌程度随黏滞系数和表面张力的增大而减弱,过大的黏滞系数和表面张力会使微气泡崩塌难以发生. 计算结果与他人的实验数据相比,发现液体的可压缩性使单泡空化强度增强, 对最佳空化区域范围的确定有较大的影响.  相似文献   

9.
在本文中,研究了液滴在一个流动聚焦微流体设备中的形成过程,分析了喉部长度和宽度以及连续相的流速和分散相的粘度对液滴尺寸的影响。在固定的分散相流速(Qd)下,连续相流速(Q_c)对于液滴尺寸有重要的影响。当Q_c0.7mL/h,液滴尺寸在喉部长度到达一个临界值之前先趋于增加,之后随着喉部尺寸的继续增加逐渐下降;当Q_c0.7mL/h,液滴尺寸随着喉部长度的增加而降低。而越大的喉部宽度会产生越大尺寸的液滴。在Q_c继续增长的过程中通常会出现从挤压模式到滴模式的转变,最终液滴尺寸呈现出随着Q_c的增加指数降低的特征。归因于流速控制破碎机制,低粘度分散相下,液滴尺寸随粘度的增加而增加。  相似文献   

10.
几何构型对流动聚焦生成微液滴的影响   总被引:1,自引:0,他引:1  
刘赵淼  杨洋 《力学学报》2016,48(4):867-876
流动聚焦型微流控装置能够方便、高效地生成均一度好且大小精确可调的微液滴(气泡),故被广泛应用于颗粒材料合成、药物封装、细胞培养等诸多领域. 进一步优化通道结构有助于实现对合成微粒粒径、均一度和尺寸范围的精确调控. 本文数值研究了通道深度、缩颈段长度以及两相夹角等几何构型因素对流动聚焦生成微液滴直径及其生成周期各个阶段的影响. 控制液滴生成方式为滴流式,发现液滴直径随通道深度d 的增加近似呈线性增大,且当通道深度小于30 μm 时,随着通道深度的下降,微液滴生成周期在毛细力的强烈作用下出现骤升,通道深度超过80 μm 时,微液滴的生成周期基本接近恒定. 连续相和离散相的夹角θ接近90°时,液滴直径及其生成周期最短,夹角太大或太小均不利于生成均一度好且粒径微小可控的液滴. 调整缩颈段长度l引起液滴直径及其生成周期的变化幅度仅为其平均值的3%~5% 左右. 此外,缩颈段宽度也是影响流动聚焦生成微液滴直径及其生成周期的重要因素,在通道深度固定时,缩颈段越宽,微液滴直径及其生成周期越大.   相似文献   

11.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

12.
A twin-fluid nozzle was proposed for low-pressure atomization. The nozzle is featured by swirling air flows in the mixing chamber. Liquid medium is thereby inhaled due to the pressure difference. An experimental work was performed to investigate the atomization performance of the nozzle and the hydrogen peroxide solution served as the liquid medium. Droplet size and droplet velocity were measured. Effects of the diameter of the air-injection orifice and the air-injection pressure were investigated. The results show that small droplet size is achieved with the proposed nozzle. As the spray develops, Sauter mean diameter (SMD) of the droplets decreases first and then increases, irrespective of the variation of the air-injection orifice diameter and the air-injection pressure. Overall SMD varies inversely with the air-injection orifice diameter and air-injection pressure. Near the nozzle, cross-sectional velocity distribution exhibits a peak-valley pattern, which is replaced with uniformized velocity distributions away from the nozzle. Similarity of cross-sectional radial velocity distribution at different air pressures is evidenced. Furthermore, the correlation between droplet size and droplet velocity is established.  相似文献   

13.
We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a viewpoint of frequency is necessary for a resonant related atomizer. The project supported by the National Natural Science Foundation of China (50405001).  相似文献   

14.
A collapsing bubble-induced microinjector: an experimental study   总被引:1,自引:0,他引:1  
In this study, a new drop-on-demand actuation mechanism, which uses an oscillating bubble as actuator is proposed and its feasibility is investigated via the consideration of two important design parameters, namely, bubble distance to free surface and nozzle dimension. The droplet ejection process captured using high-speed photography technique shows that such an actuation mechanism has interesting features and perhaps some advantages over the conventional ones (thermal bubble, piezoelectric, etc.) employed in inkjet printers such as the ejection of a droplet free of satellite droplets and others.  相似文献   

15.
A pneumatic droplet generator to produce water/glycerin droplets smaller than the nozzle diameter is described. The generator consists of a T-junction with a nozzle fit into one opening, the second opening connected to a gas cylinder through a solenoid valve and the third connected to a length of steel tubing. The droplet generator is filled with liquid. Opening the valve for a preset time creates a pulse of alternating negative and positive pressure in the gas above the surface of the liquid, ejecting a single droplet through the nozzle. Droplet formation was photographed and the pressure variation in the droplet generator recorded. The effect of various experimental parameters, such as nozzle size, pressure pulse width and liquid properties on droplet formation was investigated. Small droplets could not be generated when liquid viscosity was too low or too high. For pure water, droplet diameters were several times that of the nozzle. Using more viscous glycerin mixtures, droplets with diameters as small as 65% of the nozzle diameter could be produced.  相似文献   

16.
In this study, the generation of inkjet droplets of xanthan gum solutions in water–glycerin mixtures was investigated experimentally to understand the jetting and drop generation mechanisms of rheologically complex fluids using a drop-on-demand inkjet system based on a piezoelectric nozzle head. The ejected volume and velocity of droplet were measured while varying the wave form of bipolar shape to the piezoelectric inkjet head, and the effects of the rheological properties were examined. The shear properties of xanthan gum solutions were characterized for wide ranges of shear rate and frequency by using the diffusive wave spectroscopy microrheological method as well as the conventional rotational rheometry. The extensional properties were measured with the capillary breakup method. The result shows that drop generation process consists of two independent processes of ejection and detachment. The ejection process is found to be controlled primarily by high or infinite shear viscosity. Elasticity can affect the flow through the converging section of inkjet nozzle even though the effect may not be strong. The detachment process is controlled by extensional viscosity. Due to the strain hardening of polymers, the extensional viscosity becomes orders of magnitude larger than the Trouton viscosities based on the zero and infinite shear viscosities. The large extensional stress retards the extension of ligament, and hence the stress lowers the flight speed of the ligament head. The viscoelastic properties at the high-frequency regime do not appear to be directly related to the drop generation process even though it can affect the extensional properties.  相似文献   

17.
The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.  相似文献   

18.
A pneumatic droplet-on-demand generator   总被引:1,自引:0,他引:1  
The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.  相似文献   

19.
Micro-droplet formation from a passive vibrating micro-nozzle driven by a pulsed pressure wave is numerically simulated. The micro-nozzle is formed from an orifice in a thin walled plate that is allowed to freely vibrate due to the pressure loading on the plate. The analysis couples the fluid flow from the nozzle and the resultant droplet formation with the nozzle vibration calculated using large deflection theory. The problem is made nondimensional based on the capillary parameters of time, velocity and pressure. The applied pressure and nozzle material properties are varied to alter the vibration characteristics of the orifice plate used to form the nozzle. The initiation of drop formation is found to coincide with a threshold impulse input, defined as the product of the pressure magnitude and the pulse duration. Increasing the impulse can result in multiple satellite droplet formation, but the effect on the primary droplet size is minor. The vibration of the nozzle only weakly influences the droplet break-off time, but is shown to significantly affect the droplet volume, shape, and satellite droplet formation.  相似文献   

20.
In an effort to derive dynamic information from a single-particle counting device such as the phase-Doppler interferometer (PDI), a one-dimensional motion model and a sequential sorting algorithm have been developed to calculate the distance and velocity difference between consecutive droplets in sprays, as well as the number of droplets in close proximity (grouplets) and the frequency of grouplet formation. By focusing on sprays that are primarily uni-directional, this model can be used to highlight dynamic behavior and provide information that may indicate tendencies for clustering, collision, coalescence or evaporation among the droplets – information that is not available when considering the histograms of droplet size and velocity normally produced by PDIs. The motion model and sorting algorithm are validated for a mono-sized droplet stream generated by piezo-electric excitation, and are then applied to two other sprays to determine dynamic behavior. For a pressurized-liquid nozzle emitting water, the expected trends of droplet deceleration and spatial dispersion are found moving away from the exit of the nozzle, and significant in velocity differences between closely-spaced droplet pairs are observed. No dominant frequencies are present in the grouping of the droplets. For a droplet-laden air jet excited at a known frequency, similar results are calculated for droplet spacing, grouping and velocity differences, and the driving frequency is also obtained from analysis of the sequentially-sorted PDI data. Although the models developed assume an idealized PDI system, real operating characteristics of PDI systems place limits on the accuracy of these analyses. Received: 10 October 1998/Accepted: 5 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号