首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and properties of magnetic iron oxide nanotubes   总被引:1,自引:0,他引:1  
Magnetite (Fe3O4) nanotubes were prepared by reducing synthesized hematite (α-Fe2O3) nanotubes in 5% H2+95% Ar atmosphere,and then maghemite (γ-Fe2O3) nanotubes were obtained by re-oxidizing the Fe3O4 nanotubes.The nanotube structure was kept from collapsing or sintering throughout the high temperature reducing and re-oxidizing processes.The coercivities of the Fe3O4 and γ-Fe2O3 nanotubes synthesized were found to be 340.22 Oe and 342.23 Oe,respectively,both higher than other nanostructures with the same phase and of similar size.Both adsorbed phosphate and the nanotube structure are considered responsible for this high coercivity.  相似文献   

2.
The phase change between the forewing and hindwing is a distinct feature that sets dragonfly apart from other insects.In this paper,we investigated the aerodynamic effects of varying forewing-hindwing phase di ff erence with a60 inclined stroke plane during hovering flight.Force measurements on a pair of mechanical wing models showed that in-phase flight enhanced the forewing lift by 17%and the hindwing lift was reduced at most phase differences.The total lift of both wings was also reduced at most phase di ff erences and only increased at a phase range around in-phase.The results may explain the commonly observed behavior of the dragonfly where 0 is employed in acceleration.We further investigated the wing-wing interaction mechanism using the digital particle image velocimetry(PIV)system,and found that the forewing generated a downwash flow which is responsible for the lift reduction on the hindwing.On the other hand,an upwash flow resulted from the leading edge vortex of the hindwing helps to enhance lift on the forewing.The results suggest that the dragonflies alter the phase di ff erences to control timing of the occurrence of flow interactions to achieve certain aerodynamic effects.  相似文献   

3.
In this work,uniform reduced graphene oxide(RGO) films were formed on poly-(ethylene terephthalate)(PET) substrates using a simple drop-casting method.We investigated four types of substrates:unmodified PET,polydopamine-coated PET.carboxyl-group-modified PET,and alkyl-group-modified PET.Upon water evaporation,the surface of the polydopamine-modified PET substrates can interact with the reduced graphene oxide sheets to form flattened and continuous RGO films,which exhibit a sheet resistance of 21.75 kΩ/sq at 82%transmittance.The result indicates that the properties of the surface groups determined whether uniform and flattened RGO films could be formed on the substrates.Hence,we proposed a simple and effective way to produce transparent and conductive films in which the catechol unit exhibits a great effect on the deposition of uniform RGO films on PET substrates.  相似文献   

4.
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg.  相似文献   

5.
Magnetic particles have numerous applications in biotechnology and biomedicine. In this paper we reviewed the synthesis, surface modification and some applications of magnetic particles with focus on their synthesis and surface modification. Various methods have been developed for the production of magnetic particles (magnetic nanoparticles and magnetic composite particles). For future application magnetic particles must be modified to obtain stability and surface functional groups. Finally, the application of magnetic particles in magnetic separation, drug delivery, hyperthermia, and magnetic resonance imaging are discussed.  相似文献   

6.
Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization(FGD) gypsum.When purified FGD gypsum was used as raw material,the morphology and phase structure of the hydrothermal products grown in pure water,H_2SO_4-H_2O,NaCl-H_2O,and H_2SO_4-NaCl-H_2O solutions as well as the solubility of purified FGD gypsum in these solutions were investigated.The results indicate that calcium sulfate whiskers grow favorably in the H_2SO_4-NaCl-H_2O system.When prepared using 10-70 g NaCl/kg gypsum-0.01 M H_2SO_4-H_2O at 130 ℃ for 60 min,the obtained calcium sulfate whiskers had diameters ranging from 3 to 5 |xm and lengths from 200 to 600 |xm,and their phase structure was calcium sulfate hemihydrate(HH).Opposing effects of sulfuric acid and sodium chloride on the solubility of the purified FGD gypsum were observed.With the co-presence of sulfuric acid and sodium chloride in the reaction solution,the concentrations of Ca~(2+) and SO_4~(2-) can be kept relatively stable,which implies that the crystallization of the hydrothermal products can be controlled by changing the concentrations of sulfuric acid and sodium chloride.  相似文献   

7.
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is in- vestigated by using the stochastic averaging method. The averaged generalized It6 stochastic differential equation and Fokkerlanck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter e2s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.  相似文献   

8.
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.  相似文献   

9.
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.  相似文献   

10.
Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors(HTR).The flow field in the steam generator was studied by the computational fluid dynamics(CFD) method,with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides.Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1 μm,whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1 μm.Moreover,the resuspension fraction increases as the particle size increases.The results also indicate that resuspension of the particles with sizes larger than 1 μm exhibited obvious differences in different parts of the steam generator.  相似文献   

11.
Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)problems.To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime,we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model.To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold:acceleration and steady rotation,which are based on hovering wing kinematics of hawkmoth,Manduca sexta.Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase,which results in a significant wing deformation.While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices(LEVs),the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration.During the phase of steady rotation,the flexible wing model generates more ver-tical force at higher angles of attack(40°–60°)but less horizontal force than those of a rigid wing model.This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip,which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force.Moreover,our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics:the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation,which is mainly induced by inertial force in acceleration but by aerodynamic forces  相似文献   

12.
The influence of Na_2HPO_4·12H_2O on the hydrothermal formation of hemihydrate calcium sulfate(CaSO_4·0.5H_2O) whiskers from dihydrate calcium sulfate(CaSO_4·2H_2O)at 135 ℃ was investigated.Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO_4·2H_2O to CaSO_4·0.5H_2O via the formation of Ca_3(PO_4)_2 and produces CaSO_4-0.5H_2O whiskers with thinner diameters and shorter lengths.Compared with the blank experiment without Na_2HPO_4·12H_2O,the existence of minor amounts(8.65 ×10~(-4)-4.36 × 10~(-3) mol/L) of Na_2HPO_4·12H_2O led to a decrease in the diameter of CaSO_4·0.5H_2O whiskers from 1.0-10.0 to 0.5-2.0 μm and lengths from 70-300 to50-200 μm.  相似文献   

13.
Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number.  相似文献   

14.
Superdisintegrants are cross-linked polymers that can be used as dispersants for fast release of drug nanoparticles from nanocomposite microparticles during in vitro and in vivo dissolution.Currently available superdisintegrant particles have average sizes of approximately 5-130 μm,which are too big for drug nanocomposite applications.Hence,production of stable superdisintegrant suspensions with less than5 μm particles is desirable.Here,we explore the preparation of colloidal suspensions of anionic and nonionic superdisintegrants using a wet stirred media mill and assess their physical stability.Sodium starch glycolate(SSG) and crospovidone(CP) were selected as representative anionic and nonionic superdisintegrants,and hydroxy propyl cellulose(HPC) and sodium dodecyl sulfate(SDS) were used as a steric stabilizer and a wetting agent/stabilizer,respectively.Particle sizing,scanning electron microscopy,and zeta potential measurements were used to characterize the suspensions.Colloidal superdisintegrant suspensions were prepared reproducibly.The extensive particle breakage was attributed to the swelling-induced softening in water.SSG suspensions were stable even in the absence of stabilizers,whereas CP suspensions required HPC-SDS for minimizing particle aggregation.These findings were explained by the higher absolute(negative) zeta potential of the suspensions of the anionic superdisintegrant(SSG) as compared with those of the nonionic superdisintegrant(CP).  相似文献   

15.
Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed.In the present work,earlier work(Loha,Chattopadhyay. Chatterjee,2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-μm particles.The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed.where the solid-phase properties were calculated by applying the kinetic theory of granular flow.To investigate the effect of the elasticity of particle collision,different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail.Simulations were performed for two different solid-phase wall boundary conditions.No bubble formation was observed for perfectly elastic collision.The bubble formation started as soon as the coefficient of restitution was set below 1.0,and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution.Simulation results were also compared with experimental data available in the literature,and good agreement was found for coefficients of restitution of 0.95 and 0.99.  相似文献   

16.
Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabilizer. Transmission electron microscopy (TEM), scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were used to characterize the morphology and composition of the composite capsules. SEM and TEM images showed that capsules consisted of a particle shell and a polymer inner layer. The capsule size depends on the nanoparticle concentration in the continuous phase. The composite rigidity largely depends on the acrylamide concentration. FTIR and TGA results indicated the existence of polyacrylamide and SiO2 in the composite particles. Aqueous Hg(ll) removal testing by the PAM/SiO2 composite capsules indicated promising potential for removing heavy metal ions from wastewater.  相似文献   

17.
A combination of a continuum approach and a particle–particle approach to describe the multi-scale nature of the mechanical properties of bulk solids may be beneficial to scientific and engineering applications. In this paper, a procedure is proposed to estimate the interparticle forces beginning with the bulk flow properties as measured with standardized techniques. In particular, the relationship between interparticle forces and bulk solid tensile strength is adopted based on the microscale approaches of Rumpf(1970) and Molerus(1975). The flow properties of fluid cracking catalyst(FCC), corundum and glass bead powders were all characterized with a modified Schulze ring shear cell capable of operating at temperatures up to 500℃. The powder test conditions were selected such that the van der Waals forces were the most significant particle–particle interactions. The model equations describe two cases, in which either elastic or plastic deformation of the contact points is assumed. The results indicate that the model provides the correct order of magnitude for the values of the tensile strength when proper values for the mean curvature radius at the contact points are taken into account. A sensitivity analysis for the main parameters in the model was performed. This analysis indicated that the assumption of plastic deformation at contact surfaces coupled with a decrease in porosity justified an increase of the tensile strength with consolidation stress. Furthermore, the effect of temperature on the measured flow behavior can be explained as a change in the strength of the material.  相似文献   

18.
Fine particles play a significant role in many industrial processes.To study the dynamic behavior of fine particle and their deposition in rock fractures,the pneumatic conveying of fine particles(approximately100 μm in diameter) through a small-scale horizontal slit(0.41 m × 0.025 m) was studied,which is useful for the sealing technology of underground gas drainage in coal mining production.The CFD-DEM method was adopted to model the gas-particle two-phase flow;the gas phase was treated as a continuum and modeled using computational fluid dynamics(CFD),particle motion and collisions were simulated using the DEM code.Then,the bulk movement of fine particles through a small-scale horizontal slit was explored numerically,and the flow patterns were further investigated by visual inspection.The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities.For intermediate gas velocities,the flow patterns showed pulsation phenomena,and dune flow reappeared in the tail section.Moreover,periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity.The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings,which were obtained by video-imaging experiments.Furthermore,the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings,and the results showed good agreement.Furthermore,the particle velocity vectors and voidage distribution were numerically simulated.Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

19.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders.Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash(median particle diameter 30μm;particle density 2300kg/m~3;loosepoured bulk density 700kg/m~3) and white powder(median particle diameter 55 u.m;particle density1600kg/m~3;loose-poured bulk density 620kg/m~3) from dilute to fluidized dense-phase.Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations.It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections.However,both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s).This result could be attributed to the deceleration of particles while flowing through the bends,resulting in dampened particle fluctuation and turbulence.Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow(dense-phase),i.e.,there is a higher probability that the particles are concentrated toward the bottom of pipe,compared with dilute-phase or suspension flow(high velocity),where the particles could be expected to be distributed homogenously throughout the pipe bore(as the flow is in suspension).Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

20.
This paper presents an experimental and numerical study of the packing, compression, and caking behaviour of spray dried detergent(SDD) powders with a two-fold aim: an experimental process of observation and evaluation of the packing, compression and caking behaviour of SDD powders, and a numerical approach based on discrete element modelling(DEM). The mechanical properties, including the stress–strain response and the corresponding porosity change as a function of consolidation stress in a confined cylinder, the stress–strain response during unconfined shearing and the cake strength as a function of consolidation stress, were evaluated and compared for different SDD powders using an extended uniaxial tester(Edinburgh Powder Tester – EPT). The experiments using EPT showed excellent reproducibility in the measurement of packing, compression and caking behaviour and were therefore very useful for describing the handling characteristics of these powdered products including screening new products and different formulations. It was found that the sample with higher moisture had lower bulk porosity but higher compressibility and cake strength. The porosity, compressibility and cake strength were found to vary across different size fractions of the same sample. The larger sieve-cut samples had higher initial bulk porosity, compressibility and cake strength. It is revealed that moisture plays a significant role in packing, compression, and shearing behaviour of the powder. Three-dimensional DEM modelling using a recently developed elasto-plastic adhesive-frictional contact model showed that the contact model is able to capture the detergent behaviour reasonably well and can be used to model complex processes involving these powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号