首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用超高压毛细管黏度计考察了磷酸酯合成油和常压下黏度与之相近的合成油A及合成油B的压黏关系,并进行了磷酸酯合成油在高压下固化现象的研究,利用红外光谱和凝胶渗透色谱对固化前后的磷酸酯合成油进行了分析,并从机械力化学角度分析了产生固化的原因.结果表明:磷酸酯合成油的压黏关系上升速度远大于合成油A和B;固化后,磷酸酯的物理状态由液态变成"玻璃态",颜色由透明色变成乳白色;磷酸酯合成油发生了氧化反应,分子量增大;磷酸酯合成油经高压高剪切速率作用后,发生化学反应的原因是机械力作用导致较长分子链断裂,形成大分子自由基,具有很高活性的大分子自由基发生氧化等化学反应.  相似文献   

2.
The displacement of oil by anionic surfactant solutions in oil-wet horizontal capillary tubes is studied. The position of the oil–water interface is recorded with time. The surfactant solution used is a mixture of several different surfactants and co-solvents tailored to produce ultra-low interfacial tension (IFT) for the specific oil used in the study. The surfactant solution results in ultra-low IFT at optimum salinity and room temperature. Several experimental parameters including the capillary tube radius and surfactant solution viscosity are varied to study their effect on the interface speed. Two different models are used to predict the oil–water interface position with time. In the first model, it is assumed that the IFT is constant and ultra-low throughout the experiments. The second model involves change of wettability and IFT by adsorption of surfactant molecules to the oil–water interface and the solid surface. Comparing the predictions to the experimental results, it is observed that the second model provides a better match, especially for smaller capillary tubes. The model is then used to predict the imbibition rate for very small capillary tubes, which have equivalent permeability close to oil reservoirs. The results show that the oil displacement rate is limited by the rate of diffusion of surfactants to the interface.  相似文献   

3.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

4.
非饱和多孔介质有限元分析的基本控制方程与变分原理   总被引:2,自引:1,他引:2  
张洪武 《力学季刊》2002,23(1):50-58
本文在对问题研究现状进行阐述的基础上较系统地给出了骨架可变形非饱和多孔介质的全耦合分析模型,模型中考虑了孔隙气体,水(油)流动对介质力学性能的影响,多孔介质的饱和度,渗透系数与毛吸压力的关系,由实验给出,所导出的控制方程以固体骨架的位移与孔隙流体压力为基本未知量,由于问题的非自共轭特征,文中构造了非饱和介质动力问题的参数变分形式,并在此基础上给出有限元离散方程。  相似文献   

5.
6.
Fluid displacement in porous media plays an important role in many industrial applications, including biological filtration, carbon capture and storage, enhanced oil recovery, and fluid transport in fuel cells. The displacement front is unstable, which evolves from smooth into ramified patterns, when the mobility (ratio of permeability to viscosity) of the displacing fluid is larger than that of the displaced one; this phenomenon is called viscous fingering. Viscous fingering increases the residual saturation of the displaced fluid, considerably impairing the efficacy of fluid displacement. It is of practical importance to develop suitable methods to improve fluid displacement. This paper presents an experimental study on applying the discontinuity of capillary pressure to improve immiscible fluid displacement in drainage for which the displacing fluid (air) wets the porous media less preferentially than does the displaced fluid (silicone oil). The concept involves using a heterogeneous packing system, where the upstream region features large pores and small capillary pressure, and the downstream region features small pores and large capillary pressure. The increase in capillary pressure prevents fingering from directly crossing the media interface, thus enhancing the displacement. The experimental apparatus was a linear cell comprising porous media between two parallel plates, and glass beads of 0.6 and 0.125 mm diameter were packed to compose the heterogeneous porous media. The time history of the finger flow was recorded using a video camera. Pressure drops over the model from the inlet to the outlet were measured to compare viscous pressure drops with capillary pressures. The results show that the fluid displacement was increased by the capillary discontinuities. The optimal displacement was determined through linear regression by adjusting the relative length of the large- and small-pore region. The results may assist in the understanding of fingering flow across the boundaries of different grain-sized bands for the gas and oil reservoir management, such as setting the relative location of the injection and production wells. The findings may also serve as a reference for industrial applications such as placing the grain bands in an adequate series to improve the displacement efficacy in biological filtration.  相似文献   

7.
A spinline-type extensional viscometer is described in which an innovative method of tensile stress measurement is employed. A limited amount of liquid flows through a vertical capillary at a constant flow rate under the influence of a constant pressure head. The drainage time decreases when the liquid stream leaving the capillary is stretched by the application of vacuum. These drainage times are measured in a manner similar to that used for intrinsic viscosity measurements. The measured difference in drainage times, with and without stretching, is trivially related to the extensional stress at the capillary exit, and this provides a very simple method of accurately determining fluid stretching forces having a magnitude as low as 10-4 N; stresses at other axial locations in the stretched liquid jet are obtained by means of a force balance in the usual manner. The validity of the proposed technique is demonstrated by obtaining the expected results for a Newtonian oil having a shear viscosity of 56.2 mPa-s. Also presented are preliminary data on polyethylene oxide-in-water solutions having an even lower shear viscosity.  相似文献   

8.
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20–50°C using a capillary tube and d/dT was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of d/dT. The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).For short times after injection, the droplets were driven by this flow towards the hot wall above the matched-density temperature until the droplets reached a point where the forces due to the flow and buoyancy were equal. After longer times, the droplets moved to the cold side due to suspected density changes caused by mass transfer from the droplets to the silicone oil. This was confirmed by tests under isothermal conditions, where it was observed that droplets of all sizes fell to the cold bottom eventually.Thus, even though the thermocapillary flow inside the droplets persisted for long times in spite of the mass transfer, the migration of droplets towards the hot side was eventually affected by uncontrolled buoyancy forces resulting from density changes due to mass transfer. While additional liquids are being tried, it is suggested from the present experience that reduced gravity experiments will probably be necessary to provide unambiguous data for the migration of droplets.  相似文献   

9.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

10.
A simple process-based model of three-phase displacement cycles for both spreading and non-spreading oils in a mixed-wet capillary bundle model is presented. All possible pore filling sequences are determined analytically and it is found that the number of pore occupancies that are permitted on physical grounds is actually quite restricted. For typical non-spreading gas/oil/water systems, only two important cases need to be considered to see all types of allowed qualitative behaviour for non-spreading oils. These two cases correspond to whether water or gas is the intermediate-wetting phase in oil-wet pores as determined by the corresponding contact angles, that is, cos o gw > 0 or cos o gw < 0, respectively. Analysis of the derived pore occupancies leads to the establishment of a number of relationships showing the phase dependencies of three-phase capillary pressures and relative permeabilities in mixed-wet systems. It is shown that different relationships hold in different regions of the ternary diagram and the morphology of these regions is discussed in terms of various rock/fluid properties. Up to three distinct phase-dependency regions may appear for a non-spreading oil and this reduces to two for a spreading oil. In each region, we find that only one phase may be specified as being the intermediate-wetting phase and it is only the relative permeability of this phase and the capillary pressure between the two remaining phases that depend upon more than one saturation. Given the simplicity of the model, a remarkable variety of behaviour is predicted. Moreover, the emergent three-phase saturation-dependency regions developed in this paper should prove useful in: (a) guiding improved empirical approaches of how two-phase data should be combined to obtain the corresponding three-phase capillary pressures and relative permeabilities; and (b) determining particular displacement sequences that require additional investigation using a more complete process-based 3D pore-scale network model.  相似文献   

11.
Tight porous media are mainly composed of micro/nano-pores and throats, which leads to obvious microscale effect and nonlinear seepage characteristics. Based on the capillary bundle model and the fractal theory, a new nonlinear seepage equation was deduced, and a further fractal permeability model was obtained for oil transport in tight porous media by considering the effect of the boundary layer. The predictions of the model were then compared with experimental data to demonstrate that the model is valid. This model clarifies the oil transport mechanisms in tight porous media: the effective permeability is no longer a constant value and is governed by properties of tight porous media and oil. Furthermore, parameters influencing effective permeability were analyzed. The model can accurately present the seepage characteristics of the oil in tight porous media and provide a reliable basis for the development of unconventional reservoirs.  相似文献   

12.
This paper deals with the analysis of some aspects of the vertical and lateral migration of oil spills in the unsaturated and the capillary zone of a phreatic aquifer. Our motivation stems from the fact that such contamination represents a severe danger for ground-water resources all over the world and from the present acute problem of jet-fuel contamination in some location of Israel. In the present study, we shall focus our efforts on the analysis of the upper layers of the aquifer which are often subjected to the most significant oil contamination. Neglecting coupled processes effects such as dilution, adsorption and volatilization, also adopting Richard's assumption, a three-phase flow model is introduced with capillary heads of the water and the oil as variables. The resulting model which is coupled and strongly non-linear is solved using a vertical two-dimensional Finite-Element procedure together with a quasi-Newton optimization algorithm. Applying that scheme, various scenarios of oil migration in the unsaturated and the capillary zone were simulated. Some migration characteristics prediced by the numerical simulations are discussed. In particular, the dynamics of the water and oil phases during the migration process is discussed.  相似文献   

13.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

14.
A dynamic pore network model, capable of predicting the displacement of oil from a porous medium by a wettability-altering and interfacial tension reducing surfactant solution, is presented. The key ingredients of the model are (1) a dynamic network model for the displacement of oil by aqueous phase taking account of capillary and viscous effects, (2) a simulation of the transport of surfactant through the network by advection and diffusion taking account of adsorption on the solid surface, and (3) the coupling of these two by linking the contact angle and interfacial tension appearing in the dynamic network simulation to the local concentration of surfactant computed in the transport simulation. The coupling is two-way: The flow field used to advect the surfactant concentration is that associated with the displacement of oil by the injected aqueous phase, and the surfactant concentration influences the flow field through its effect on the capillarity parameters. We present results obtained using the model to validate that it reproduces the displacement patterns observed by other authors in two-dimensional networks as capillary number and mobility ratio are varied, and to illustrate the effects of surfactant on displacement patterns. A mechanism is demonstrated whereby in an initially mixed-wet medium, surfactant-induced wettability alteration can lead to stabilization of displacement fronts.  相似文献   

15.
A chemical flood model for a three-component (petroleum, water, injected chemical) two-phase (aqueous, oleic) system is presented. It is ruled by a system of nonlinear partial differential equations: the continuity equation for the transport of each of its components and Darcy's equation for the two-phase flow. The transport mechanisms considered are ultralow interfacial tension, capillary pressure, dispersion, adsorption, and partition of the components between the fluid phases (including solubilization and swelling).The mathematical model is numerically solved in the one-dimensional case by finite differences using an explicit and direct iterative procedure for the discretization of the conservation equations. Numerical results are compared with Yortsos and Fokas' exact solution for the linear waterflood case including capillary pressure effects and with Larson's model for surfactant flooding. The effects of the above-mentioned transport mechanisms on concentration profiles and on oil recovery are also analyzed.  相似文献   

16.
Pore-network modelling is commonly used to predict capillary pressure and relative permeability functions for multi-phase flow simulations. These functions strongly depend on the presence of fluid films and layers in pore corners. Recently, van Dijke and Sorbie (J. Coll. Int. Sci. 293:455–463, 2006) obtained the new thermodynamically derived criterion for oil layers existence in the pore corners with non-uniform wettability caused by ageing. This criterion is consistent with the thermodynamically derived capillary entry pressures for other water invasion displacements and it is more restrictive than the previously used geometrical layer collapse criterion. The thermodynamic criterion has been included in a newly developed two-phase flow pore network model, as well as two versions of the geometrical criterion. The network model takes as input networks extracted from pore space reconstruction methods or CT images. Furthermore, a new n-cornered star shape characterization technique has been implemented, based on shape factor and dimensionless hydraulic radius as input parameters. For two unstructured networks, derived from a Berea sandstone sample, oil residuals have been estimated for different wettability scenarios, by varying the contact angles in oil-filled pores after ageing from weakly to strongly oil-wet. Simulation of primary drainage, ageing and water invasion show that the thermodynamical oil layer existence criterion gives more realistic oil residual saturations compared to the geometrical criteria. Additionally, a sensitivity analysis has been carried out of oil residuals with respect to end-point capillary pressures. For strongly oil-wet cases residuals increase strongly with increasing end-point capillary pressures, contrary to intermediate oil-wet cases.  相似文献   

17.
Summary Die swell behaviour and morphology of melt blends of isotactic polypropylene (PP) and high density polyethylene for pure polymers and blends with 25, 50 and 75 weight % PP are described in the present study. A light interference contrast microscopy technique was used for the morphological characterization of melt blends and extrudate samples of the blends obtained with an Instron capillary rheometer. The results indicate that the domains from blends where the dispersed phase has higher viscosity than the continuous phase remain as continuous domains in the extrudate whereas domain destruction takes place when blends where the continuous phase has the higher viscosity are extruded.The die swell behaviour as well as the fiber forming properties of extrudates of melts having unstable domains extruded at high shear stresses resemble the behaviour of homopolymers, whereas samples with stable domains are significantly different, die swell increases with temperature at constant shear stress and stable fibers cannot be obtained after necking.With 10 figures and 1 table  相似文献   

18.
阐明氯苯基硅油润滑球轴承的润滑机理,对不同真空度和转速下的轴承摩擦力矩进行研究.在真空度3×10 -5Pa条件下,选用FY-3卫星“紫外臭氧垂直探测仪”光学调制器电机样机和进口电机进行8个月工程试验后,利用高倍显微镜分析试验轴承表观状态,并分析氯苯基硅油的泄漏量.结果表明:在3×10-5Pa下,所用试验轴承的摩擦力矩值随着转速的增大而趋向稳定;氯苯基硅油润滑球轴承摩擦力矩的变化量为9.8×10-4Nm,小于采用Maplub101润滑的进口电机轴承摩擦力矩变化量;试验期间氯苯基硅油的泄漏量为1.92mg,证明采用氯苯基硅油润滑适合光学调制器在真空环境下长期运转  相似文献   

19.
An ensemble-based technique has been developed and successfully applied to simultaneously estimate the relative permeability and capillary pressure by history matching the observed production profile. Relative permeability and capillary pressure curves are represented by using a power-law model. Then, forward simulation is performed with the initial coefficients of the power-law model, all of which are to be tuned automatically and finally determined once the observed data is assimilated completely and history matched. The newly developed technique has been validated by a synthetic coreflooding experiment with two scenarios. The endpoints are fixed for the first scenario, whereas they are completely free in the second scenario. Simultaneous estimation of relative permeability and capillary pressure has been found to improve gradually as more observation data is assimilated. There exists an excellent agreement between both the updated relative permeability and capillary pressure and their corresponding reference values, once the discrepancy between the simulated and observed production history has been minimized. Compared with coefficients of capillary pressure curve, coefficients of relative permeability curves, irreducible water saturation and residual oil saturation are found to be more sensitive to the observed data. In addition, water relative permeability is more sensitive to the observation data than either oil relative permeability or capillary pressure. It is shown from its application to a laboratory coreflooding experiment that relative permeability and capillary pressure curves can be simultaneously evaluated once all of the experimental measurements are assimilated and history matched.  相似文献   

20.
Summary A comparative study has been carried out on the flow behaviour (shear rate v. shear stress analysis) of some different polyethylene melts. For the purpose, viscometers of the cylindrical capillary and of the rectangular slit type were used. Comparison has been made between rectangular slits of breadth/width ratio 10/1, 20/1, 30/1 with (A) each other, and (B) with the cylindrical capillaries.It is concluded that under these differing conditions the flow behaviour for the rectangular slits is compatible with that for the cylindrical capillaries.It was also found possible to estimate the isothermal compressibilities of the materials examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号