首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了减小MEMS陀螺仪的正交误差,进一步提高陀螺精度,在Simulink环境中对陀螺结构和测控系统进行了建模和仿真。首先在理想状态的陀螺结构模型基础上建立了包含机械热噪声、模态间耦合等非理想因素的结构模型,并给出了陀螺结构的相关设计参数。其次在陀螺结构模型上以自激振荡和AGC控制技术为基础设计了驱动回路,该回路可在短时间内将驱动幅度稳定在10μm,且驱动频率为4048 Hz(驱动模态的谐振频率)。然后分析了模态间耦合信号的作用方式并建立了正交校正和检测闭环力反馈回路,仿真结果显示,在全闭环状态下检测模态所受耦合力的幅度比未校正状态下降了5个数量级,等效输入角速度也从205(°)/s下降到了6.58(°)/h。最后对陀螺模型进行了整体测试,得到其标度因数和阈值分别为21.76 mV/(°)/s和0.002(°)/s。  相似文献   

2.
为硅微陀螺设计了一种正交误差直流校正方法,通过设计校正结构和加载直流电压实现正交校正。建立了存在正交误差时敏感质量的运动微分方程,分析明确了正交响应的成因和对驱动运动轨迹的影响。为硅微陀螺设计了正交校正结构,实现构建静电耦合弹性系数并利用驱动运动产生校正静电力。校正力的频率和相位无需电路控制,使该方法相较于传统校正方法具备特殊优势。设计并分析了校正电压的两种加载方式,通过实验测试验证了正交响应幅值随校正电压的变化规律。实测校正电压接近理论值,证明了校正结构设计的正确性。该方法在双线振动式硅微陀螺中具有重要应用价值。  相似文献   

3.
为了分析双质量解耦硅微陀螺结构中的机械耦合误差,对微陀螺结构的非理想解耦特性进行了研究。首先,阐述了双质量解耦硅微陀螺仪的结构原理,推导了双质量解耦硅微陀螺仪的检测位移;接着构建检测框架在驱动模态下非理想的解耦模型,推导了由非理想解耦导致检测框架的平动位移与转动位移的公式;然后进行了结构非理想解耦特性仿真分析,对驱动模态时检测框架和检测模态时驱动框架的非理想运动特性进行仿真,结果表明检测框架的残余平动位移达到驱动位移的0.86%,最大转动残余位移达到了驱动位移的2.7%,而驱动框架的平动残余位移达到了检测位移的1.36%,转动残余位移达到了检测位移的0.87%;最后,对加工的双质量解耦硅微陀螺结构芯片的非理想解耦误差进行了测量,结果表明非真空封装下的正交误差达到158.65(o)/s,失调误差为19.03(o)/s,偏置稳定性达到12.01(o)/h。  相似文献   

4.
线振动硅微机械陀螺结构误差参数分离和辨识   总被引:3,自引:5,他引:3  
推导了线振动微机械陀螺的三自由度误差力学方程,并详细分析了陀螺耦合误差的产生机理。分析结果表明,各种结构误差是导致陀螺耦合误差信号的主要原因。在此基础上,利用振动和模态理论给出了陀螺结构误差参数的分离和辨识的试验方法和结果。试验结果表明,同相耦合分量和正交耦合分量是微机械陀螺的两种主要误差信号,造成正交耦合的主要原因是驱动轴和检测轴之间的刚度耦合以及驱动轴和检测轴各自的刚度不对称,造成同相耦合的主要原因是驱动轴和检测轴之间的阻尼耦合以及检测轴刚度不对称和驱动力不对称。结构误差参数的分离和辨识试验方法将为下一步的陀螺结构优化、微加工工艺改进以及耦合误差抑制提供基础。  相似文献   

5.
MEMS陀螺仪传感器件的机械正交误差信号会造成陀螺仪灵敏度、偏置稳定性等系统关键性能下降,甚至使陀螺仪工作失效。同步解调可以有效消除机械正交误差信号,但需要精准控制校准相位。设计了一款基于双通道解调相位校准技术的陀螺仪接口电路芯片,采用0.35μm CMOS工艺。芯片检测通路中设计了中心频率可调的开关电容型带通滤波器,用模拟方式粗调相位误差,并消除低频振动噪声与高频耦合噪声;解调信号产生通路中设计了可调相移分频器,用数字方式精调相位误差。实验结果表明,本芯片的相位校准精度要明显高于仅采用数字相位校准技术的对比芯片,并且将系统噪声降低了一个数量级以上,偏置稳定性性能也从100(°)/h提高到了6(°)/h。  相似文献   

6.
双质量块结构形式的硅微陀螺仪能够有效消除轴向加速度等共模干扰的影响。利用结构解耦方法设计了一种新型的双质量双线振动式硅微机械陀螺仪。依据双质量硅微陀螺的结构和工作原理,通过简化的动力学方程,对该陀螺的驱动和检测模态进行了理论分析,并利用Ansys有限元软件对陀螺的驱动和检测模态进行了数值仿真。仿真结果表明,该陀螺结构设计能够实现驱动和检测模态的完全解耦,从而验证了设计思想的正确性。通过仿真,得到了驱动和检测模态的仿真频率值。在对微陀螺加工所采用的加工工艺进行简单介绍后,对加工出的硅微机械陀螺仪样品的模态频率值进行了电路测试。由于加工误差的存在,实验得到的驱动和检测频率值与仿真设计值存在1.6%的误差。最后在转台上对样品的标度因数进行了测定,得到了该双质量硅微陀螺仪的标度因数为2.518mV/((°)?s-1)。  相似文献   

7.
以一种电容式全对称S形弹性梁硅基环形波动陀螺仪为对象,对其正交误差进行了相关的研究,以提升MEMS环形陀螺仪的精度。首先,介绍了环形陀螺仪结构,同时以此结构为基础分析了正交误差产生的原因及影响;然后,对环形陀螺仪检测通道的输出信号进行量化分析,并根据正交力校正法设计了环形陀螺仪的正交误差补偿系统;最后,对加入正交误差补偿后的环形陀螺仪进行了实验测试。结果显示,校正后的零偏、零偏稳定性分别为-2.62°/s、1.37°/h,与校正前相比,分别提升了3倍和10.6倍,验证了该正交误差补偿系统对陀螺仪正交误差的抑制效果,补偿后陀螺仪的零偏稳定性显著提升,陀螺输出更加稳定,为MEMS陀螺仪应用于未来军事及民用领域奠定了基础。  相似文献   

8.
单轴旋转惯导系统转轴陀螺常值漂移综合校正方法   总被引:2,自引:0,他引:2  
为提高单轴旋转惯导系统长时间的导航工作精度,根据单轴旋转惯导误差方程阐述了单轴旋转惯导的自动补偿原理,指出转轴方向陀螺漂移是引起系统位置误差发散的最主要的误差源。在动基座条件下,建立了转轴陀螺常值漂移与系统经度误差之间的数学模型,根据经度误差即可估计转轴方向的陀螺常值漂移,实现系统转轴方向陀螺的常值漂移综合校正。利用计算机仿真方法验证了所给数学模型的合理性,利用建立的数学模型,只要获得一次准确的位置信息,即可对系统位置进行重调,并且实现对系统转轴方向陀螺漂移的估计与补偿,实现系统的综合校正。转轴方向陀螺漂移经过补偿后,其精度由0.002(°)/h提高到0.0005(°)/h,并给出了对系统进行综合校正的较佳时机。  相似文献   

9.
低温超导核磁共振陀螺仪模型   总被引:2,自引:0,他引:2  
建立了单工作物质的三自由度3He低温超导核磁共振陀螺仪结构;利用了量子力学和经典动力学,经过严密的力学分析和数学演算,给出了三轴陀螺仪的工作原理和结构示意图;针对陀螺仪的交叉轴角速率耦合问题,给出了附加磁场线圈解耦法和冗余设计结构,最后建立了基于超导量子干涉仪探测磁矩,并采用最小二乘估计法来推导陀螺进动频率.陀螺仪测速范围可以达到10-9~103 rad/s,漂移为10-4 (°)/h.该陀螺仪结合低温超导技术具有高精度的前景.需要进一步对超导量子干涉磁矩检测仪的精度与陀螺性能进行研究.  相似文献   

10.
根据二阶质量-弹簧-阻尼系统的幅频特性和相频特性关于谐振频率对称的特点,提出了一种低频振荡激励的实时模态匹配技术,根据检测模态的输出响应来判别驱动模态和检测模态的匹配程度。首先简要介绍了带频率调谐功能的双质量线振动硅微陀螺仪,该陀螺利用负刚度效应来调节检测模态的谐振频率;然后通过理论推导以及系统仿真验证了基于低频调制激励的自动模态匹配技术的可行性和有效性;最后设计了一种基于现场可编程逻辑阵列(FPGA)的数字控制电路,并且对同一测试陀螺进行了模态匹配和模态不匹配下的性能对比。试验结果表明,相比模态不匹配条件下,陀螺零偏稳定性从5.89(°)/h提高到1.26(°)/h,角度随机游走从0.36(°)/√h提高到0.079(°)/√h,性能分别提高了4.7倍和4.6倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号