首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
消息与动态     
烧蚀试验纵横向自动送进系统研制成功电弧加热器烧蚀试验是研究再入飞行器防热层的地面模拟试验的主要手段。为了更好地模拟飞行条件,人们一直致力于电弧加热器性能的改进。随着电弧加热器运行技术的提高,用来测量参数的各种水冷探针极易烧毁。因此瞬态焓探针,零点量热计等快速扫掠型探针应运而生,而后者需要一套可调速  相似文献   

2.
高超声速非定常流动的数值模拟与气动热计算   总被引:2,自引:0,他引:2  
高超声速飞行器研究中的一个重点问题是飞行器表面的气动加热,它对飞行器的气动、热特性及安全性有重要的影响.受到当前实验技术的限制,地面实验无法准确模拟真实飞行条件,所以采用数值模拟研究气动加热问题成为目前重要的研究手段.本文采用数值方法求解三维N-S方程,得到钝头体再入模型绕流的瞬态流场,驻点温度及表面热流沿轨道变化规律.计算中采用变边界条件模拟沿轨道飞行的非定常性.  相似文献   

3.
烧蚀试验纵横向自动送进系统研制成功电弧加热器烧蚀试验是研究再入飞行器防热层的地面模拟试验的主要手段。为了更好地模拟飞行条件,人们一直致力于电弧加热器性能的改进。随着电弧加热器运行技术的提高,用来测量参数的各种水冷探针极易烧毁。因此瞬态焓探针,零点量热计等快速扫掠型探针应运而生,而后者需要一套可调速 ...  相似文献   

4.
烧蚀试验纵横向自动送进系统研制成功电弧加热器烧蚀试验是研究再入飞行器防热层的地面模拟试验的主要手段。为了更好地模拟飞行条件,人们一直致力于电弧加热器性能的改进。随着电弧加热器运行技术的提高,用来测量参数的各种水冷探针极易烧毁。因此瞬态焓探针,零点量热计等快速扫掠型探针应运而生,而后者需要一套可调速 ...  相似文献   

5.
复杂外形再入飞行器的设计,需对气动力热环境进行预测,由于不同的气体模型会对预测的结果产生影响,所以气动设计时就必须考虑这一影响.采用热化学平衡气体模型和双温度热化学非平衡气体模型对复杂外形再入飞行器的气动力热环境进行了数值计算;分析了气体模型对气动力、壁面热流等值线、驻点线平动温度、振动温度、组分质量分数等特征量的影响...  相似文献   

6.
针对高超声速飞行器飞行时气动加热严重的问题,为了保证高升阻比外形,提出疏导式热防护结构,建立了一套内置高导C/C材料的疏导式热防护结构原理模型,通过数值模拟和电弧风洞的方法对疏导式热防护结构进行了分析,得到内置高导C/C材料的防热效果.数值模拟结果表明来流马赫数为8时,模型驻点温度下降了500度,柱面最低升高了380度,实现了热流从高温区到低温区的疏导,减弱了端头的热载荷,强化了端头的热防护能力.通过电弧风洞试验可以获得相似的结果,内置普通C/C材料表层抗氧化层出现严重烧蚀,而内置高导C/C材料基本不变,验证了数值模拟方法的准确性以及内置高导C/C材料疏导式热防护结构的有效性.  相似文献   

7.
周正瑾  赖培华 《力学进展》1990,20(4):488-498
本文着重介绍了林同骥和他的合作者们在烧蚀图象方面的研究工作,包括再入飞行器、地面实验模型和吉林陨石三部分。他们发现烧蚀图象是受烧蚀表面的边界层雷诺数控制的。研究了两种典型的烧蚀图象:有序熔楔和菱形花纹。得到了再入飞行器和模型的转捩雷诺数。  相似文献   

8.
罗跃  王磊  党雷宁  刘进博  张军  柳森 《力学学报》2020,52(5):1362-1370
烧蚀是小行星极高速进入地球大气层后最重要的现象之一,在很大程度上决定了小行星的质量/尺寸变化、飞行轨迹、甚至光辐射特性. 为观测小行星材料在超高速高温流场中的烧蚀现象,在电弧加热器上开展了模拟Chelyabinsk小行星事件典型弹道状态(速度约5.6 km/s,高度17 km,流星体直径1 m)的烧蚀实验. 试件为钝头外形,头部半径20 mm,半锥角18$^\circ$. 作为对比,试件分别采用玄武岩和碳钢材料. 成功记录了清晰的烧蚀动态过程,观察到两种材料试件表面的熔融损失流动、以及玄武岩试件的蒸发喷射和崩裂剥落等现象,全程测得烧蚀气体发射光谱、试件实时外形变化、表面热图变化等数据. 分析结果显示了两种材料明显不同的烧蚀现象和质量损失机制:碳钢在高温气流冲击作用下溅射成大量微小液滴,跟随气流高速流失;玄武岩质量损失以熔融物剪切流动为主,并伴随少量块状剥落及蒸发喷射. 烧蚀时间为4 s,玄武岩和碳钢的质量损失及驻点后退量分别为37.9 g,72.7 g以及7.3 mm,13.1 mm,估算玄武岩材料的有效烧蚀焓约为2.6 MJ/kg,两种材料的烧蚀光谱测量组分与电镜能谱扫描结果吻合.   相似文献   

9.
针对再入飞行器的惯性仪表误差模型在地面测试环境下和真实飞行环境下不一致的特点,提出了按照过载变化的大小对其误差模型进行分段辨识和分段补偿的方法,以补偿飞行器高速再入过程中的制导工具误差。最后通过计算机仿真试验验证了此方法的正确性,为实际应用提供了理论依据。  相似文献   

10.
静电探针作为等离子体诊断的一种基本手段,在许多高温气体动力学的地面模拟实验设备(诸如电弧加热器、等离子体风洞、火箭发动机、激波管、高速弹道靶等)以及再人飞行试验中均有广泛的应用。因此,它对于同遥测、通 ...  相似文献   

11.
充气式再入与降落技术(IRDT--Inflatable Reentry and Descent Technology)是近年来出现的一种新型的航天回收技术。它的结构简单、回收成本低,极大地改善了返回式飞行器的气动加热环境,同时降低了飞行器表面的热流密度。本文在现有技术的基础上提出了一种可控方向的再入充气罩,研究表明将其应用于返回式飞行器的回收时,可在低密度大气层内将飞行器的速度降至较低水平(20m/s 以内),从而降低了对防热材料的要求。另外,在没有附加动力装置的情况下可通过对充气罩气囊的充/放气来主动控制返回式飞行器的姿态,从而控制着陆点的方位。数值模拟结果表明该再入充气罩可为返回式飞行器提供足够的阻力和偏转力矩,从而起到减速和控制的作用。气动热分析结果表明:该再入充气罩在返回过程中的气动加热情况(最大热流密度为426kW/m2)远小于传统返回舱(最大热流密度为4826kW/m2),从而大幅度地降低了防热系统设计的复杂度。  相似文献   

12.
随着飞行马赫数的不断提高,空气的高温气体效应越来越明显,对高超声速飞行器的气动力/热特性产生重要影响.高温气体效应对气动力/热的影响机理复杂,影响参数众多,迄今为止国内外尚未完全研究清楚.发生高温气体效应时,多个非线性物理过程耦合在一起,地面试验和数值模拟无法将这些过程解耦,无法给出关键物理机理.为了解决这一问题,文章提出一种理论分析与数值模拟相结合的两步渐进新方法:先通过牛顿迭代法得到发生振动激发过程的斜激波无黏解;再将该无黏解的结果作为边界条件,求解边界层的黏性解.利用该方法研究了振动激发过程对二维斜劈的气动力/热特性的影响规律.研究结果表明,振动激发过程对斜激波后的温度、密度、马赫数、雷诺数和斜激波角影响较大,而对压力和速度影响较小.斜激波波后的无黏流动与边界层流动是耦合在一起的.发生振动激发后,斜激波波后雷诺数的增大会导致边界层厚度减小,结合多个物理量的变化,如速度增大和温度减小,共同对边界层内的摩擦阻力和气动热产生影响.对比完全气体的结果发现,振动激发使壁面摩阻升高,而使壁面热流降低.分别通过影响激波层和边界层,振动激发对摩阻的影响是弱耦合的,而对热流的影响则是强耦合的.  相似文献   

13.
近空间高速飞行器气动特性研究与布局设计优化   总被引:7,自引:0,他引:7  
叶友达 《力学进展》2009,39(6):683-694
高空高速飞行中的黏性干扰效应、真实气体效应和稀薄气体效应成为决定未来空天飞行器能否实现安全飞行、精确控制和制导的重大基础科学问题.介绍了黏性干扰效应、真实气体效应和稀薄气体效应对高空高速飞行器气动特性影响,回顾了飞行器气动布局设计优化的发展过程,给出典型高速高升阻比飞行器气动布局设计及优化的结果.   相似文献   

14.
针对高超声速飞行器飞行时翼前缘存在着严重的气动加热问题,为了保证翼前缘的尖锐外形,提出疏导式热防护结构,利用内置高温热管结构为翼前缘提供热防护。采用数值模拟和电弧风洞试验的方法对翼前缘疏导式结构进行了分析,得到翼前缘内置高温热管具有的防热效果。数值模拟结果表明在一定热环境条件下,翼前缘驻点温度下降了304 K,尾部最低温度升高了130 K,实现了热流从高温区到低温区的疏导,减弱了翼前缘的热载荷,强化了翼前缘的热防护能力。通过电弧风洞试验可以获得相同的热防护结果,并且在一定飞行条件下高温热管可以自适应启动,验证了数值模拟方法的准确性以及翼前缘内置高温热管疏导式热防护结构的可行性。  相似文献   

15.
磁流体流动控制中的磁场配置效率研究   总被引:2,自引:0,他引:2  
陈刚  张劲柏  李椿萱 《力学学报》2008,40(6):752-759
采用数值模拟方法研究了不同磁场空间构型对弹道式再入飞行器基准外形表面热流分布的影响. 计算模型为低磁雷诺数近似下的磁流体力学模型. 数值模拟结果表明两个大小相同、方向不同的磁偶极子对表面热流密度分布的影响存在较大差异,由此指出热流控制应用中磁场配置的效率问题. 随后的磁场详细作用机理分析表明上述差异的原因在于不同空间磁场分布对流动能量转化机制的影响不同. 以此为基础给出了在流动的不同区域,磁场空间分布应遵循的一般性原则.   相似文献   

16.
烧蚀是小行星极高速进入地球大气层后最重要的现象之一,在很大程度上决定了小行星的质量/尺寸变化、飞行轨迹、甚至光辐射特性. 为观测小行星材料在超高速高温流场中的烧蚀现象,在电弧加热器上开展了模拟Chelyabinsk小行星事件典型弹道状态(速度约5.6 km/s,高度17 km,流星体直径1 m)的烧蚀实验. 试件为钝头外形,头部半径20 mm,半锥角18$^\circ$. 作为对比,试件分别采用玄武岩和碳钢材料. 成功记录了清晰的烧蚀动态过程,观察到两种材料试件表面的熔融损失流动、以及玄武岩试件的蒸发喷射和崩裂剥落等现象,全程测得烧蚀气体发射光谱、试件实时外形变化、表面热图变化等数据. 分析结果显示了两种材料明显不同的烧蚀现象和质量损失机制:碳钢在高温气流冲击作用下溅射成大量微小液滴,跟随气流高速流失;玄武岩质量损失以熔融物剪切流动为主,并伴随少量块状剥落及蒸发喷射. 烧蚀时间为4 s,玄武岩和碳钢的质量损失及驻点后退量分别为37.9 g,72.7 g以及7.3 mm,13.1 mm,估算玄武岩材料的有效烧蚀焓约为2.6 MJ/kg,两种材料的烧蚀光谱测量组分与电镜能谱扫描结果吻合.  相似文献   

17.
高超声速飞行器气动热关联换算方法研究   总被引:3,自引:2,他引:1  
气动热风洞实验是地面研究和预测飞行器气动热环境的重要手段之一, 但由于风洞实验模拟能力的限制, 风洞实验的流场参数和模型的几何尺度都会与实际飞行情况存在一定的差别, 导致地面风洞实验中得到的模型表面气动加热率数据无法直接用于飞行条件下的热环境预测和热防护设计. 以往通过针对具体飞行器的试验结果进行数据拟合后外插的气动热关联换算方法指向性较强, 没有考虑到气动热的具体影响参数, 存在一定局限性, 难以外推应用于其他外形的飞行器. 为解决通过气动热风洞实验数据外推预测飞行条件下气动热的技术难题, 基于无量纲NS方程和边界层理论分析研究了影响气动热的主要参数, 并通过推导化简边界层近似解热流公式, 针对层流流态建立了气动热关联换算方法, 可以考虑当地边界层外缘参数的影响, 具有一定通用性. 在此基础上, 利用建立的方法将Reentry-F飞行器缩比模型的风洞实验数据换算到该飞行器飞行条件下的典型工况, 并与飞行测量结果进行了比较, 外推预测结果与飞行测量结果符合较好, 表明建立的关联方法可以用于气动热风洞实验数据的外推换算.   相似文献   

18.
小行星撞击地球的超高速问题   总被引:1,自引:0,他引:1  
小行星撞击地球是人类生存面临的潜在威胁之一.在小行星进入地球大气与撞击地球表面过程中,存在烧蚀、解体、空中爆炸、火球、撞击成坑、反溅碎片云、地震以及海啸等一系列复杂的物理化学和力学现象.本文梳理和归纳了与这些现象相关的超高速空气动力学问题和超高速碰撞动力学问题.小行星进入地球大气的超高速空气动力学问题有:极高速($V = 12 ~ 20$km/s)进入条件下的气动力与轨迹,极高速进入条件下的小行星气动加热与烧蚀机理,极高速气动加热条件下的小行星结构传热与热响应,极高速进入条件下的高温气体效应,小行星进入过程的物理特征.小行星撞击地球的超高速碰撞动力学问题有:陆地撞击成坑与反溅碎片云,海洋撞击与海啸,撞击过程的地震效应.由于小行星撞击地球与超高速飞行器的再入过程在速度、材料和结构上存在较大差异,针对这些超高速问题,现有的研究手段在地面试验和数值计算两方面都存在不足.最后,从小行星进入地球大气的弹道方程、质量损失方程、解体判据和解体模型等出发,初步建立了小行星进入与撞击效应分析评估模型,并对Chelyabinsk和Tunguska两次流星事件进行了分析,重构了进入与爆炸解体过程,评估了空爆火球在地面所导致的超压和热辐射损伤.   相似文献   

19.
气动热风洞实验是地面研究和预测飞行器气动热环境的重要手段之一,但由于风洞实验模拟能力的限制,风洞实验的流场参数和模型的几何尺度都会与实际飞行情况存在一定的差别,导致地面风洞实验中得到的模型表面气动加热率数据无法直接用于飞行条件下的热环境预测和热防护设计.以往通过针对具体飞行器的试验结果进行数据拟合后外插的气动热关联换算方法指向性较强,没有考虑到气动热的具体影响参数,存在一定局限性,难以外推应用于其他外形的飞行器.为解决通过气动热风洞实验数据外推预测飞行条件下气动热的技术难题,基于无量纲NS方程和边界层理论分析研究了影响气动热的主要参数,并通过推导化简边界层近似解热流公式,针对层流流态建立了气动热关联换算方法,可以考虑当地边界层外缘参数的影响,具有一定通用性.在此基础上,利用建立的方法将Reentry-F飞行器缩比模型的风洞实验数据换算到该飞行器飞行条件下的典型工况,并与飞行测量结果进行了比较,外推预测结果与飞行测量结果符合较好,表明建立的关联方法可以用于气动热风洞实验数据的外推换算.  相似文献   

20.
小行星撞击地球是人类生存面临的潜在威胁之一.在小行星进入地球大气与撞击地球表面过程中,存在烧蚀、解体、空中爆炸、火球、撞击成坑、反溅碎片云、地震以及海啸等一系列复杂的物理化学和力学现象.本文梳理和归纳了与这些现象相关的超高速空气动力学问题和超高速碰撞动力学问题.小行星进入地球大气的超高速空气动力学问题有:极高速(V=12~20 km/s)进入条件下的气动力与轨迹,极高速进入条件下的小行星气动加热与烧蚀机理,极高速气动加热条件下的小行星结构传热与热响应,极高速进入条件下的高温气体效应,小行星进入过程的物理特征.小行星撞击地球的超高速碰撞动力学问题有:陆地撞击成坑与反溅碎片云,海洋撞击与海啸,撞击过程的地震效应.由于小行星撞击地球与超高速飞行器的再入过程在速度、材料和结构上存在较大差异,针对这些超高速问题,现有的研究手段在地面试验和数值计算两方面都存在不足.最后,从小行星进入地球大气的弹道方程、质量损失方程、解体判据和解体模型等出发,初步建立了小行星进入与撞击效应分析评估模型,并对Chelyabinsk和Tunguska两次流星事件进行了分析,重构了进入与爆炸解体过程,评估了空爆火球在地面所导致的超压和热辐射损伤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号