首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自适应无网格热弹塑性接触模型研究   总被引:2,自引:1,他引:1  
提出一种自适应无网格热弹塑性接触求解模型,求解接触问题的线性规划-增量初应力法与基于应变能梯度的自适应无网格法相结合,给出了模型计算理论和算法实现.通过圆柱体与弹塑性平面热弹塑性接触算例对模型进行验证.对是否考虑材料应变硬化,是否考虑摩擦力和热输入,是否考虑材料屈服强度温度相关等情况的两种算例进行了讨论.结果表明,该模型能有效地求解考虑不同情况下的热弹塑性接触问题,在较真实地模拟接触状况的同时,具有较高的计算精度和计算效率.  相似文献   

2.
将非光滑方程组方法与Mortar StS接触模型(Mortar Segment-to-Segment)相结合,来求解接触面网格非匹配时的弹性接触问题.其中,非光滑方程组方法是求解弹性摩擦接触问题的有效方法,具有精确满足接触条件、迭代算法收敛性有理论保证的优点,但目前仅用于求解网格匹配的接触问题.Mortar StS接触模型可以较为方便地处理网格非匹配接触问题,其特点是不引入过多约束,满足接触分片检验条件,但目前大都采用“试验-误差”迭代方法求解控制方程,对于复杂接触问题,其收敛性不易保证.因此,将二者结合来处理网格非匹配接触问题,既可以提高求解精度,又能使得算法的收敛性得到理论保证.数值算例对接触分片检验和算法的计算精度进行了验证.  相似文献   

3.
针对螺旋锥齿轮重载下热胶合失效问题,对螺旋锥齿轮在混合润滑条件下的摩擦热行为进行分析. 通过混合弹流润滑数值计算方法和基于有限元的热分析方法,综合考虑螺旋锥齿轮的表面粗糙度、载荷分担、速度矢量和真实接触几何等因素建立点接触混合润滑分析模型,计算啮合轨迹上的连续摩擦系数变化和摩擦热流率,采用有限元分析软件进行齿面热载荷的加载,考虑轮齿导热和齿面与环境的热对流,分析轮齿本体温度场分布和啮合过程中闪温变化. 根据齿面最大接触温度与国际标准ISO 6336-20中齿轮抗胶合能力计算方法进行比较分析. 结果表明:有限元热分析得到的齿面温度与ISO所得变化规律十分接近,其最大温度低于ISO标准计算温度,使用ISO标准计算出螺旋锥齿轮抗胶合安全系数小于有限元法. 在混合润滑下求解的齿面热流率和温度变化,并且考虑了齿轮热传导和热对流影响,从理论上来说有限元法更加符合实际工作情况. ISO方法在处理上述问题以及计算本体温度上仍有不足,但其在齿轮抗胶合能力校核上具有广泛的适用性,可考虑结合有限元热分析法解决传热问题同时进行抗胶合能力综合评价.   相似文献   

4.
三维摩擦接触问题具有多重非线性性质,使求解变得比较困难,为了解决此问题,建立了三维摩擦接触问题的模型,介绍了一种非光滑混合不动点算法.该算法克服了在接触面上由于可能的滑动状态有无穷多个而难以确定的难点,算法未引入人工变量,计算量较小,计算结果精确满足接触状态条件,收敛性得到保证.根据此算法编制程序,将叠合悬臂梁算例数值计算结果与商用有限元软件进行比较,也表明了不动点算法的有效性.  相似文献   

5.
张军  刘迎曦 《力学学报》2003,35(6):707-715
轮轨滚动接触蠕滑率/力理论是轮轨相互作用一系列问题研究的基础.现有的几种计算蠕滑力的理论模型均建立在Hertz接触条件和半空间假设的基础上,已经无法完成对复杂的接触问题的进一步研究.使用有限元参数二次规划法来求解轮轨的三维弹性/弹塑性接触问题,得出了在不同的轴重、牵引力矩、摩擦系数、踏面形状、横向力条件下的轮轨接触力.提出用轮轨接触的轮周位移计算蠕滑率的新方法,并对在各种参数下所得到的蠕滑率进行了分析比较.  相似文献   

6.
耦合热弹性接触问题的变分原理   总被引:1,自引:0,他引:1  
本文给出了考虑库伦摩擦力的热弹性接触问题的一个变分原理,该变分原理在约束条件Pn≥0和-μPn≤Pt≤μPn下,在接触边界上自动给出导热条件及剩余互补条件等。从它出发将接触弹性体离散后可直接进行二次规划求解。文中特地引进了因子β,它计及了接触问题中的热量散失和功率损耗  相似文献   

7.
薛冰寒  林皋  胡志强  庞林 《力学学报》2016,48(3):615-623
摩擦接触问题是计算力学领域最具挑战性的问题之一,接触系统的泛函具有非线性、非光滑的特点,导致接触算法的收敛性与精确性难以保证.因此将比例边界等几何分析(scaled boundary isogeometric analysis,SBIGA)与B可微方程组(B dierential equation,BDE)相结合,提出了求解二维摩擦接触问题的比例边界等几何B可微方程组方法.在比例边界等几何坐标变换的基础上,通过虚功原理推导了关于边界控制点变量的接触平衡方程,表示成B可微方程组形式的接触条件可被严格满足,求解B可微方程组的算法的收敛性有理论保证.此比例边界等几何B可微方程组方法(SBIGA-BDE)只需在接触体边界进行等几何离散,使问题降低一维,能精确描述接触边界,并可通过节点插入算法进行真实接触区域的识别.此外,由于几何建模和数值分析使用相同的基函数,节约了划分网格的时间.以赫兹接触问题和悬臂梁摩擦接触问题为例,通过与解析解及数值计算软件ANSYS计算结果进行对比,验证了该方法求解二维摩擦接触问题的有效性及高精度等特点.   相似文献   

8.
本文提出了用边界元法分析有摩擦弹性接触问题的一个新方法,即边界元混合法。该方法是用边界元法先求出接触边界的接触内力的影响系数矩阵,再由接触边界的连续性条件求解接触内力,将接触面上的几何非线性转化到局部求解,使接触迭代的计算量大大降低。通过实例,将求出的计算结果同理论解以及其它数值方法的结果进行了比较,表明该方法是非常有效的。  相似文献   

9.
使用不等距多重网格技术求解线接触热弹流润滑问题   总被引:2,自引:0,他引:2  
使用不等距多重网格法求解了线接触热弹流润滑问题 .结果表明 :与等距多重网格法相比 ,新解法虽不能提高数值求解的稳定性 ,却能得到更为精确的压力、膜厚及温度分布 ;计算结果表明中载下第二压力峰是光滑的  相似文献   

10.
1.引言 滚动轴承接触负荷分布的计算在轴承理论和应用中占有重要地位。当将壳体、轴承的外圈、滚动体、内圈和轴看成是组成轴承系统的基本要素时,这就是个多体接触问题。 弹性接触问题属于局部非线性问题,这是由系统的接触状态不能事先确定而引起的。随着接触体个数的增多,接触状态就变得更为复杂。对此问题本文用子结构有限元进行了分  相似文献   

11.
无拉力弹性地基上矩形薄板的屈曲/后屈曲问题是板壳力学中一类重要课题,在工程中有着大量应用.因涉及接触非线性,目前主要采用数值方法对该类问题进行求解,发展具有重要基准价值的解析方法是当前面临的一项挑战.针对上述问题,本文将板划分为若干包含强制边界条件的板,形成子问题,在辛空间下利用分离变量与辛本征展开对子问题进行解析求解,通过子问题边界处的连续条件确定板与地基的接触状态;通过迭代求解上述过程,获得子问题划分的收敛结果,并得到最终屈曲载荷及模态.结果表明,无拉力弹性地基与Winkler地基上板的屈曲行为存在显著差异,且无拉力弹性地基的刚度对板的屈曲载荷与屈曲模态均有重要影响.在此基础上,结合Koiter摄动法与辛方法,对无拉力弹性地基上矩形板的后屈曲问题进行求解,获得板的后屈曲平衡路径.所得到的屈曲与后屈曲分析结果均与有限元计算结果吻合良好,确认了本文结果的正确性.由于本文方法数学推导严格,求解效率高,因此不仅为研究无拉力弹性地基上矩形薄板的屈曲/后屈曲行为提供了一种有价值的理论工具,更有望拓展至更多复杂板壳力学问题的求解.  相似文献   

12.
比例边界有限元侧面上有任意荷载时,将侧面载荷分解成关于径向方向局部坐标的多项式函数的和,推导给出了考虑侧面载荷存在的新型形函数,并基于该形函数推导了刚度矩阵和等效节点载荷列阵.首次对比例边界有限元法求解裂纹面接触问题进行了研究,运用Lagrange乘子引入接触界面约束条件,推导给出了比例边界有限元求解裂纹面接触问题的控制方程.将裂纹面单元分为非裂尖单元和含有侧面的裂尖单元.在非裂尖单元中的裂纹面,裂纹面作为多边形单元的边界,边界上的接触力可等效到节点上,通过在节点上构造Lagrange乘子,采用点对点接触约束进行处理.对于含有侧面的裂尖单元,在整个侧面上构造Lagrange乘子的插值场,采用边对边接触约束进行处理.对三个不同的接触约束状态下的算例进行了数值计算,通过与解析解及有限元软件ABAQUS计算结果的对比,验证了本文提出的比例边界有限元点对点和边对边接触求解裂纹面接触问题的精确性与有效性.  相似文献   

13.
比例边界有限元侧面上有任意荷载时,将侧面载荷分解成关于径向方向局部坐标的多项式函数的和,推导给出了考虑侧面载荷存在的新型形函数,并基于该形函数推导了刚度矩阵和等效节点载荷列阵.首次对比例边界有限元法求解裂纹面接触问题进行了研究,运用Lagrange乘子引入接触界面约束条件,推导给出了比例边界有限元求解裂纹面接触问题的控制方程.将裂纹面单元分为非裂尖单元和含有侧面的裂尖单元.在非裂尖单元中的裂纹面,裂纹面作为多边形单元的边界,边界上的接触力可等效到节点上,通过在节点上构造Lagrange乘子,采用点对点接触约束进行处理.对于含有侧面的裂尖单元,在整个侧面上构造Lagrange乘子的插值场,采用边对边接触约束进行处理.对三个不同的接触约束状态下的算例进行了数值计算,通过与解析解及有限元软件ABAQUS计算结果的对比,验证了本文提出的比例边界有限元点对点和边对边接触求解裂纹面接触问题的精确性与有效性.  相似文献   

14.
岩土介质非稳态热固结耦合问题的热源函数法   总被引:9,自引:1,他引:9  
白冰 《力学学报》2004,36(4):427-434
考虑耦合效应的饱和土体热固结问题控制方程,利用Fourier变换、Laplace变换给出其在变换域上的解,将初始温度场分布视为虚拟的热源或者将热源等价为特定的初始温度分布,利用热源函数法给出瞬时线热源非稳态温度场、应力场和位移场的解析求解方法,通过在时间域和空间域上进行积分,给出有初始温度场分布以及有分布内热源存在且热源强度随时间变化条件下的热固结问题计算方法。对一无限大物体内存在有平面矩形域热源情况下周围介质的温度、孔隙水压力以及位移等的变化特征进行分析。研究表明,热源函数法可有效地求解一系列复杂情况下的热固结问题。  相似文献   

15.
基于势能原理以节点位移为设计变量、以接触条件为约束方程构建了无摩擦弹性接触问题的二次规划数学模型,在此基础之上利用力平衡线性约束方程的特解和由基础解向量构成的奇异模态矩阵,提出一种新的基于奇异坐标变换的自由度缩减方法,大大降低了二次规划的规模,并使得二次规划模型不再含显性等式约束;根据弹性接触力学体系的特点,通过人为假定接触自由度位移模式,提出了一种简单高效的奇异模态矩阵的计算方法.通过两圆柱接触、轴孔间隙配合接触两个数值算例的对比分析,验证了对于弹性接触问题的求解,缩减二次规划方法有效克服了传统方法计算量大、对求解参数设置敏感、收敛困难的问题.  相似文献   

16.
接触问题应力分析的混合解法   总被引:3,自引:0,他引:3  
接触问题是一个极其复杂的非线性问题,单独使用数值方法或实验方法求解应力都有一定的困难.有限元计算与平面光弹性实验相结合的混合法是对接触问题进行应力分析简单而有效的途径.  相似文献   

17.
针对弹塑性接触问题所推得的数值求解式子,运用二次规划法具体设计了算法,该算法采用有限的基底交换运算就可得到收敛的数值解,具有较好的收敛性及较小的计算工作量.工程计算算例结果表明文章所提出的接触问题的求解方法是有效的,针对结构中接触问题所建立的数值计算模型能真实反映实际工作状况是可靠的.文章中还详细给出了接触单元相关矩阵和向量的具体推导形式.  相似文献   

18.
全制动工况下轮轨热-机耦合效应的分析   总被引:3,自引:2,他引:3  
采用有限元法从摩擦热效应角度探寻轮轨表面破坏的原因,建立了轮轨热-机械载荷耦合接触模型,分析纯滑动接触过程中轮轨的温升以及热应力,模型中考虑了轮轨间非稳态热传导、与环境的热对流和热辐射以及轮轨间的接触计算,分析了滑动接触过程中应力场的分布特点以及速度的影响.结果表明:所采用的接触算法能够求解二维轮轨全制动工况下的热接触问题;轮轨摩擦热效应只存在于表层,其影响随着深度增加而减小;轮轨的相对滑动速度越高,其热效应越明显.  相似文献   

19.
使用子域边界元法对受移动接触弹性体作用下的二维闭合裂纹问题进行了数值计算。由于两弹性体的接触界面和裂纹表面的接触范围的大小和接触状态事先是未知的 ,对此 ,在两个接触表面同时采用迭代的方法进行了求解。在裂纹的每个裂尖上都采用了四分之一的奇异单元以保证裂尖位移场和应力场奇异性的满足。用我们编制的二维裂纹问题程序对一些中心裂纹问题进行了计算 ,计算结果与经典断裂力学的理论值比较吻合。在无摩擦的条件下 ,对一些具有不同角度且受移动接触弹性体作用下的闭合裂纹问题进行了数值计算 ,得到了一些耦合作用下的应力强度因子的计算结果  相似文献   

20.
尹崇林  吕爱钟 《力学学报》2020,52(1):247-257
在实际工程中,围岩和衬砌接触时,它们之间并非完全光滑,也并非可以承受任意大的摩擦力.如果围岩与衬砌之间的剪应力大于所能承受的最大静摩擦力,接触面间将发生切向滑动,定义接触面上产生最小滑动量的状态为衬砌的真实工作状态,这种接触即为摩擦滑动接触.以库仑摩擦模型模拟围岩和衬砌之间的摩擦滑动接触,在考虑支护滞后效应的前提下,利用平面弹性复变函数方法列出了应力边界条件、应力连续条件以及位移连续条件的方程, 再结合最优化理论,建立了具有一般性的摩擦滑动接触解法.在利用混合罚函数法求解最优化问题的过程中,减少了设计变量的个数,极大地简化了优化模型,提升了优化过程的迭代速度以及优化结果的精度.以此为基础,获得了围岩和衬砌相互作用下圆形水工隧洞的应力解析解.该方法可以求解光滑接触和完全接触两种极限情况,具有一般性.同时,利用一种精确的计算方法得到了不同情况下满足完全接触条件摩擦系数的阈值,还分析了衬砌和围岩边界上切向应力的变化规律.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号