首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact affects the dynamic characteristics of mechanical multi-body systems and damages those rotating parts, such as the joint rolling element bearings, which are high-precision, defect intolerant components. Based on multi-body dynamic theory, Hertzian contact theory, and a continuous contact model, this study proposed a modelling method that can describe the dynamic behaviour of planar mechanical multi-body systems containing a rolling ball bearing joint under impact. In this method, the rigid bodies and bearing joint were connected according to their joint force constraints; the impact constraint between the multi-body system and the target rigid body was constructed using a continuous contact force model. Based on this method, the reflection relationship between the external impacts of the mechanical multi-body system and the variation law governing the dynamic load on the rolling bearing joint were revealed. Subsequently, an impact multi-body system, which was composed of a sliding–crank mechanism containing a rolling ball bearing joint and the target rigid body with an elastic support, was analysed to explore the dynamic response of such a complex discontinuous dynamic system andthe relevant relationship governing the dynamic load on the rolling bearing joint. In addition, a multi-body dynamic simulation software was used to build a virtual prototype of the impact slider–crank system. Compared with the theoretical model, the prototype had an additional deep groove ball bearing. That is to say, the prototype model took account of the specific geometric structural characteristics and the complex contact relationship of the inner and outer races, rolling balls, and bearing cage. Finally, the effectiveness of the theoretical method proposed in this study was verified by comparative analysis of the results. The results suggested that the external impact of a mechanical multi-body system was prone to induce sudden changes in the equivalent reaction force on its bearing joint and the dynamic load carried on its rolling balls. This study provided an effective method for exploring the distribution characteristics of dynamic loads on rolling ball bearing joints under working impact load conditions. Moreover, it offered support for the parameter optimisation of geometric structure, performance evaluation, and dynamic design of the rolling ball bearings.  相似文献   

2.
The development of a quadratic programming formulation for the solution of layered elastic contact problems in the presence of friction is presented in this paper. Conveyor belts, tyred wheels, composite cylinders, and conrod bearings, are classical examples of systems which can be studied using the efficient numerical methodology proposed here. In this type of mechanical assembly, micro-slip between the mating surfaces often occurs and may eventually lead to system failure. Accurately capturing the evolution of slip and stick areas using a computationally inexpensive procedure (as an alternative to full finite element analysis) is therefore key to preventing these failures and to improving the design of various engineering components.The proposed approach is first tested and validated against classical marching-in-time solutions for two-dimensional layered systems in the presence of both static and moving loads. Results are then extended to demonstrate the feasibility of the technique to study systems with multiple slip regions and to solve rolling contact problems of practical interest. Finally, the numerical methodology is successfully applied to the prediction of frictional creep of tyred cylinders. Experimental corroboration has been obtained by testing tyred discs.  相似文献   

3.
Helical springs are indispensable elements in mechanical engineering. This paper investigates helical springs subjected to axial loads under different dynamic conditions. The mechanical system, composed of a helical spring and two blocks, is considered and analyzed. Multibody system dynamics theory is applied to model the system, where the spring is modeled by Euler–Bernoulli curved beam elements based on an absolute nodal coordinate formulation. Compared with previous studies, contact between the coils of spring is considered here. A three-dimensional beam-to-beam contact model is presented to describe the interaction between the spring coils. Numerical analysis provides details such as spring stiffness, static and dynamic stress for helical spring under compression. All these results are available in design of helical springs.  相似文献   

4.
Friction contacts are often used in turbomachinery design as passive damping systems. In particular, underplatform dampers are mechanical devices used to decrease the vibration amplitudes of bladed disks.Numerical codes are used to optimize during designing the underplatform damper effectiveness in order to limit the resonant stress level of the blades. In such codes, the contact model plays the most relevant role in calculation of the dissipated energy at friction interfaces. One of the most important contact parameters to consider in order to calculate the forced response of blades assembly is the static normal load acting at the contact, since its value strongly affects the area of the hysteresis loop of the tangential force, and therefore the amount of dissipation.A common procedure to estimate the static normal loads acting on underplatform dampers consists in decoupling the static and the dynamic balance of the damper. A preliminary static analysis of the contact is performed in order to get the static contact/gap status to use in the calculation, assuming that it does not change when vibration occurs.In this paper, a novel approach is proposed. The static and the dynamic displacements of the system (bladed disk+underplatform dampers) are coupled together during the forced response calculation. Static loads acting at the contacts follow from static displacements and no preliminary static analysis of the system is necessary.The proposed method is applied to a numerical test case representing a simplified bladed disk with underplatform dampers. Results are compared with those obtained with the classical approach.  相似文献   

5.
王晓军  吕敬  王琪 《力学学报》2019,51(1):209-217
基于LuGre摩擦模型和线性互补问题(LCP)的数值算法,给出了具有双边约束含摩擦滑移铰平面多体系统动力学的数值算法.首先,根据滑移铰的特点,当间隙充分小时,将其视为双边约束,给出了滑移铰中滑道作用于滑块上的法向接触力的互补关系;LuGre摩擦模型能有效地描述机械系统中的黏滞与滑移运动,将该模型用于描述滑块与滑道间的摩擦力.其次,结合Baumgarte约束稳定化方法,应用第一类Lagrange方程,建立了该多体系统的动力学方程,给出了Lagrange乘子与滑移铰中作用于滑块上的法向接触力的关系式.然后,将滑块与滑道间多种接触状态的判断以及作用于滑块上的法向接触力的计算转换为线性互补问题的求解,并用常微分方程的数值算法求解该多体系统的动力学方程.最后,通过数值仿真算例揭示了滑移铰中滑块的黏滞与滑移现象,以及滑块在滑道内的多种接触状态;另外,在文中分别采用Coulomb干摩擦模型和LuGre摩擦模型,对算例中的某些工况进行了数值仿真,并且分别用本文方法得到的数值仿真结果与已有方法得到的数值仿真结果对比,表明了本文给出的方法的有效性.   相似文献   

6.
机械系统中摩擦模型的研究进展   总被引:14,自引:1,他引:13  
摩擦现象在机械系统中的作用日益突出, 合理地解决机械系统中摩擦环节尤其是非线性摩擦环节的制约问题 已成为当前研究的重点. 由于摩擦的复杂性, 很难从机理上获得其准确唯一的数学模型, 迄今已提出的摩擦模 型有数十种. 鉴于目前机械系统中摩擦建模的发展状况, 首先描述了几种重要的摩擦现象, 如库仑摩擦、黏性 摩擦、Stribeck效应、预滑动摩擦、可变的静态摩擦力和摩擦记忆效应等. 其次, 系统地介绍了几种较为重要的、 常用的摩擦模型, 包括6种静态摩擦模型和7种动态摩擦模型, 并对每一种模型的构成, 特点和适用范围等 进行了较为详细地论述. 比较而言, 静态摩擦模型结构简单, 参数辨识容易, 但是无法描述摩擦的动态特性, 动态摩擦模型能够比较全面的描述摩擦现象, 但结构复杂, 参数辨识难度较大. 再次, 简要概述了摩擦建模 对机械系统动力学行为的影响, 以及在高精度定位系统的控制中的作用. 最后, 针对当前机械系统中摩擦建 模方面存在的一些不足提出了几点展望. 为今后摩擦模型的选用和新摩擦模型的建立提供了参考.  相似文献   

7.
王庚祥  马道林  刘洋  刘才山 《力学学报》2022,54(12):3239-3266
接触碰撞行为作为大自然与多体系统中的常见现象, 其接触力模型对于多体系统的碰撞行为机理研究与性能预测至关重要. 静态弹塑性接触模型与考虑能量耗散的连续接触力模型是研究接触碰撞行为的两类不同方法, 在多体系统碰撞动力学中存在诸多共性与差异. 本文分别从上述两类接触模型的发展历程入手, 详细介绍了两类模型的区别与联系. 首先, 根据阻尼项分母中是否含有初始碰撞速度将连续接触力模型分为黏性接触力模型与迟滞接触力模型, 讨论了能量指数与Hertz接触刚度之间的关系, 阐述了现有连续接触力模型在计算弹塑性材料接触碰撞行为时存在的问题. 其次, 着重介绍了分段连续的准静态弹塑性接触力模型(可连续从完全弹性转换到完全塑性接触阶段), 分析了利用此类弹塑性接触力模型计算碰撞行为的技术特点. 同时, 以恢复系数为桥梁和借助线性化的弹塑性接触刚度, 避免了Hertz刚度对弹塑性接触刚度的计算误差, 根据碰撞前后多体系统的能量与动能守恒推导了弹塑性接触模型等效的迟滞阻尼因子. 探索了连续接触力模型与准静态弹塑性接触力模型之间的内在联系, 数值计算结果定量说明了人为阻尼项代表的能量耗散与弹塑性接触力模型中加卸载路径代表的能量耗散具有等效性. 另外, 为了避免阻尼项分母中初始碰撞速度在计算颗粒物质动态性能时导致的数值奇异问题, 通过求解等效的线性单自由度欠阻尼非受迫振动方程获得了阻尼项分母中不含初始碰撞速度的连续接触力模型, 并以一维球链为例, 证明了该模型相比EDEM软件使用的连续接触力模型具有更高的精度. 最后, 本文分析了当前多体系统碰撞动力学的研究现状, 并简要展望了多体系统碰撞动力学中接触力模型的发展趋势与面临的挑战.   相似文献   

8.
The present paper is devoted to the analysis of the contact/impact problems with Coulomb friction and large deformation between two hyperelastic bodies of Gent model. The total Lagrangian formulation is adopted to describe the geometrically non-linear behavior. For the finite element implementation, the explicit expression of the incremental law of Gent model is derived. A first order algorithm is applied for the numerical integration of the time-discretized equation of motion. Efficiency and accuracy of the resulting method is illustrated on a two-dimensional static contact problem and a three-dimensional dynamic contact problem as compared with ANSYS simulations.  相似文献   

9.
A computer based formulation for the analysis of mechanical systems is investigated as a feasible method to predict the impact response of complex structural systems. A general methodology for the dynamic analysis of rigid-flexible multibody systems using a number of redundant Cartesian coordinates and the method of the Lagrange multipliers is presented. The component mode synthesis is then used to reduce the number of flexible degrees of freedom. In many impact situations, the individual structural members are overloaded giving rise to plastic deformations in highly localized regions, called plastic hinges. This concept is used by associating revolute nonlinear actuators with constitutive relations corresponding to the collapse behavior of the structural components. The contact of the system components is described using a continuous force model based on the Hertz contact law with hysteresis damping. The effect and importance of structural damping schemes in flexible bodies are also addressed here. Finally, the validity of this methodology is assessed by comparing the results of the proposed models with those obtained in different experimental tests where: a beam collides transversally with a rigid block; a torque box impacts a rigid barrier.  相似文献   

10.
通过对颗粒体系接触过程的运动学和动力学分析,建立了一种基于超二次曲面的非球形离散单元模型,该模型避免了球形接触模型描述颗粒形状的局限性,使离散单元法更接近物理事实,并在此基础上提出了计算求解模型的数值方法,实现了对复杂形状的颗粒体系的模拟计算。将所建立的数值计算方法进行了编程实现,并对模型和算法进行了算例测试,证实了本文所建立的非球形离散单元模型的可行性和正确性。测试结果表明,本文的模型能够比较准确地模拟复杂颗粒体系的真实运动,可为复杂颗粒体系的模拟研究提供一种新的数值计算方法。  相似文献   

11.
The paper discusses the treatment of general contact/impact problems in multibody mechanical systems, with particular attention to the implementation of such procedures in commercial codes. We describe a unilateral contact model based on a flexible parameterization of the contacting surfaces, a geometrical minimum distance problem and a constitutive model of the interaction forces. The resulting numerical procedures are demonstrated by means of examples.  相似文献   

12.
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.  相似文献   

13.
陈石  陶英  沈胜强  李德伟 《力学学报》2014,46(3):329-335
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.   相似文献   

14.
Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system.  相似文献   

15.
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first-and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theo-retical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is compli-cated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.  相似文献   

16.
Cieszko  M.  Kubik  J. 《Transport in Porous Media》1999,34(1-3):319-336
The compatibility conditions matching macroscopic mechanical fields at the contact surface between fluid-saturated porous solid and adjacent bulk fluid are considered. Special attention is paid to the derivation of conditions for tangential components of the fluid flow velocities and to the verification of validity of the condition postulated by Beavers and Joseph. It has been shown that at the contact surface between two media, a dissipation of mechanical energy due to the fluid viscosity does exist and thus the form of a dissipation function has been proposed. It has been proven that this relation determines the form of two linear compatibility conditions derived for the tangential components of the relative fluid velocities and that these conditions describe the experimental results more precisely than the condition postulated by Beavers and Joseph.  相似文献   

17.
The ‘plane vs. plane’ contact involving flat punches has been the subject of many investigations, even in recent years, mainly due to the crucial role that such components play in phenomena, such as fretting fatigue and indentation tests. While the problem has been deeply approached from a theoretical point of view, there is a noteworthy lack of experimental verifications due to the limited number of laboratory techniques capable of supplying detailed information about contact parameters. In order to make a partial contribution towards gaining an understanding of such problems, this study proposes the investigation of flat rounded punch contact with an ultrasound-based technique, which exploits the properties of ultrasonic waves to be differently reflected by a contact interface depending on its stress state. A suitable setup was built in such a way as to ensure a good level of control of contact conditions, and the interface was scanned with a high-frequency ultrasonic transducer so as to acquire the reflection data. While the graphic processing of the ultrasonic coefficient of reflection may easily be displayed as a ‘contact map’, the quantitative accuracy of the method was also investigated by comparing experimental results with those obtained from a Finite Element model of the system. The results show a good level of agreement between the two approaches, thus confirming that the ultrasonic technique can be effectively employed to investigate many contact problems which to date have never (or scarcely) been experimentally validated.  相似文献   

18.
Summary A hemivariational inequality model for adhesive grasping problems is proposed and studied in this paper. The unilateral frictionless and frictional contact effects between the fingertips and the grasping object that lead to linear complementarity problems with singular matrices for the study of static equilibrium of the gripper-object system are generalized here to cover adhesive multifingered grippers. Adhesive effects are modelled by appropriately defined, generally nonconvex, yield sets in the space of contact stresses, friction stresses, gaps or frictional slips and their combinations. The hemivariational inequality problem that arises may involve copositive plus, symmetric matrices and nonempty closed sets for the frictionless gripper problem and copositive plus, nonsymmetric matrices with starshaped sets for the frictional case. Solvability conditions that guarantee the existence of a solution to the gripper problem are given. They specify the conditions which are required to hold between external forces, fingertip mechanical behavior and finger placement in order to solve the gripper problem.  相似文献   

19.
针对机床结构中的平面结合面,通过实验分析了结合面在均布面压作用下的结合面法向变形与平均压力的关系;将结合面表面简化为半圆弧和正弦曲线两种微观形貌,利用有限元方法模拟结合面的接触变形力学行为,计算结果显示半圆弧形貌接触分析结果与实验结果较为接近.从结合面作用的物理本质出发,将结合面的相互作用等效为内聚力效应,利用内聚力模型分析了结合面的静态力学行为;内聚力模型计算结果与实验结果吻合较好.  相似文献   

20.
Modeling intermittent contact for flexible multibody systems   总被引:1,自引:0,他引:1  
This paper consists of two parts. The first part presents a complementarity based recursive scheme to model intermittent contact for flexible multibody systems. A recursive divide-and-conquer framework is used to explicitly impose the bilateral constraints in the entire system. The presented approach is an extension of the hybrid scheme for rigid multibody systems to allow for small deformations in form of local mode shapes. The normal contact and frictional complementarity conditions are formulated at position and velocity level, respectively, for each body in the system. The recursive scheme preserves the essential characteristics of the contact model and formulates a minimal size linear complementarity problem at logarithmic cost for parallel implementation. For a certain class of contact problems in flexible multibody systems, the complementarity based time-stepping scheme requires prohibitively small time-steps to retain accuracy. Modeling intermittent contact for this class of contact problems motivated the development of an iterative scheme. The second part of the paper describes this iterative scheme to model unilateral constraints for a multibody system with relatively fewer contacts. The iterative scheme does not require a traditional complementarity formulation and allows the use of any higher order integration methods. A comparison is then made between the traditional complementarity formulation and the presented iterative scheme via numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号