首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
钢框架高等分析中考虑局部屈曲的子结构法   总被引:1,自引:0,他引:1  
将相对自由度概念引入三维实体等参数单元,得到了16结点相对自由度壳元的插值表达式,并基于更新拉格朗日构型的虚位移原理推导了该壳单元的刚度矩阵。在单元刚度矩阵形成以后采用子结构法对内部结点自由度进行聚缩,根据薄壁构件相关假定并考虑截面翘曲因素的影响,通过边界结点的位移协调条件把壳单元组装成每端7个自由度的薄壁梁-柱单元参与整体分析,可以考虑板件局部屈曲的影响;突破了传统分析的紧凑型截面限制,并通过算例证明了本文方法的精确度和有效性。  相似文献   

2.
本文建立了正交曲线坐标中的六结点三十自由度等参曲壳三角形单元,考虑横向剪切的影响。坐标和位移均采用二次插值,以三角形单元为过渡单元计算三通问题,数值结果表明它的有效性。  相似文献   

3.
拱屈曲荷载分析的三维退化曲梁单元有限元法   总被引:6,自引:0,他引:6  
在三维块体等参元及16结点相对位移板壳元的基础上,引入梁的基本假定,考虑几何非线性,构造出三维退化曲梁单元,计算了梁、拱线弹性屈曲临界荷载。  相似文献   

4.
1.引言由等参数单元发展而来的40个自由度八结点的壳体单元不仅可应用来计算厚壳,而且可用来计算薄壳.文[6]对单元通过任一点的中面法线的计算,给出一个与文[1—4]所采用的不同的合理的方案,文[6,7]进行过实例计算.我们对国内及国外这两种方案,都编制了程序,进行比较性计算.应力计算使用了一个线性外推公式,可  相似文献   

5.
为了简便有效地解决板壳结构的大变形问题,本文针对八节点相对自由度壳单元进行研究。该单元的位移场由壳的中面节点位移和上表面节点的相对位移组成,不带有转动变量。所有的研究都是基于完全的三维位移、应力、应变场。采用拟应变法,对应变场另行假设,能够改善该单元在大变形情况下的计算精度。通过引入Wilson非协调模式,构造了大变形情况下的拟应变场表达式,给出了该单元用于解决非线性动力分析问题的有限元求解方程。通过算例表明,本文针对相对自由度壳单元提出的方法及推导的公式,能够解决冲击动力问题中的大变形问题。  相似文献   

6.
针对八节点相对自由度壳单元,给出了单元内坐标和位移的插值公式,利用HuWashinzu变分原理,基于拟应变法,在大变形情况下推导了拟应变的表达式,构造了带有沙漏控制的动力问题的有限元求解格式。通过算例表明该文提出的基于相对自由度壳元的沙漏控制算法能够很好地解决非线性动力问题,可改善计算精度和计算效率。  相似文献   

7.
扁壳单元中引入结点转角自由度可以在不增加结点的情况下,增加位移场的阶次,提高计算精度,从而显著地提高单元性能。同时在单元中引入泡状位移场,能有效地扩大了单元位移场的解空间,所构造的单元具有计算精度高、对计算网格畸变不敏感的优良特性。本文利用广义协调薄板单元RGC-12的位移函数作为扁壳元的法向位移,利广义协调矩形膜元的位移函数作为扁壳面的切向位移,通过附加面内转动自由度构造了一个具有24个自由度的4结点广义协调曲面矩形扁壳元GRC-S24。在此基础上再增加一个广义泡状位移,又构造了一个具有更高计算精度的曲面矩形扁壳元GRC-S24M。并通过实例分析对这两个单元的收敛性和精度进行了验证。  相似文献   

8.
平面壳单元是由平面应力单元和平板弯曲单元叠加组合而成,具有简单的理论表达,但是它在计算曲面壳体结构时误差较大。为了进一步提高平面壳单元的计算精度,本文提出了一种计算平面壳单元刚度矩阵的新方法。通过该方法在高斯积分点建立多个单元局部坐标系,并保证每个局部坐标系都位于单元在高斯点处的切平面上,从而可以有效适应曲面壳体形状,达到进一步提高平面壳单元计算精度的目的。为了在这种新坐标系下计算单元刚度矩阵,给出了求解形函数对局部坐标的导数、局部到自然坐标系积分转换的雅可比、以及局部到整体坐标系的转换矩阵的新型计算方法。通过将这些新坐标系以及新计算方法运用到平面壳单元DKQ24中,可以有效提高平面壳单元尤其是在计算曲面壳体时的精度。计算结果表明,本文方法和平面壳单元相结合,不仅具有平面壳单元简单的理论表达式,还能得到满意的精度。另外,本文方法还可以应用到其他类型的平面壳单元,为提高其他类型平面壳单元的计算精度提供了一种新的途径和思路,具有广阔的应用前景。  相似文献   

9.
层合板是航空航天领域典型的承力构件,过大的层间应力是导致其分层失效的主要原因.准确的层间应力预测往往依赖于三维平衡方程后处理方法(TPM).然而,该方法需要计算面内应力的一阶导,使得基于C0型板理论构造的线性单元无法使用TPM计算横向剪应力.本文在三维平衡方程后处理方法的基础上,提出了一种新后处理方法(NPM).新后处理方法通过虚功等效法消除了三维平衡方程后处理方法中产生的位移参数的高阶导.基于提出的新后处理方法和C0型板理论,仅需使用线性单元就可以预测层合板的横向剪应力.为了验证所提方法的有效性,本文基于修正锯齿理论(RZT)和所提方法构造了一种C0连续的三节点三角形线性板单元.数值算例表明,所提方法和三维平衡方程后处理方法具有相同的计算精度,提出的板单元能够准确高效地预测层合板的横向剪应力.此外,所提方法便于结合现有的有限元商用软件使用,基于商用软件中板壳单元获得的节点位移,使用新后处理方法极易获得准确的层间剪应力.  相似文献   

10.
基于有限条带思想,引入结点扭率自由度,利用深梁单元的位移模式建立了一个4结点16自由度中厚板弯曲高阶单元,此单元是薄板单元BFS-16的推广形式,其特点是单元的横向位移、转角位移、剪应变位移模式直接构造,在边界上位移模式与深梁单元一致,方便与梁单元叠加,适应于带加劲肋的板弯曲问题分析,用于薄壁结构时可考虑翘曲。实例计算显示,此单元精度高,计算稳定,收敛快,无剪切闭锁现象,能较好地反映中厚板的边界效应。  相似文献   

11.
本文将Reissner-Mindlin板理论推广到空间曲壳结构,可称为Reissner-Mindlin型壳理论。从这种理论出发,可直接导出C(0)连续的壳体单元,即考虑横向剪切变型的影向的壳体单元,这种单元在国外已被广泛地采用,为克服这种单元在应用中所出现的剪切和膜的锁制现象同时又防止出现任何零能模式,作者提出了一种采用假定应变的新的壳单元公式,并对这种单元进行了广泛的数值试验,结果表明这种单元具有较高的精度和良好的性能。  相似文献   

12.
Piezoceramic materials exhibit different types of nonlinearities under different combinations of electric and mechanical fields. When excited near resonance in the presence of weak electric fields, they exhibit typical nonlinearities similar to a Duffing oscillator such as jump phenomena and presence of superharmonics in the response spectra. In order to model such nonlinearities, a nonlinear electric enthalpy density function (using quadratic and cubic terms) valid for a general 3-D piezoelectric continuum has been proposed in this work. Linear (i.e. proportional) and nonlinear damping models have also been proposed. The coupled nonlinear finite element equations have been derived using variational formulation. The classical linearization technique has been used to derive the linearized stiffness and damping matrices which helps in assembling the nonlinear matrices and solution of resulting nonlinear equation. The general 3-D finite element formulation is discussed in this paper. In a companion paper by Samal et al., numerical results on various typical examples are shown to match very well with the experimental observations.  相似文献   

13.
基于Kane-Mindlin关于弹性平板面内问题位移的运动学假设,本文首次推导了一种考虑板厚效应的平板面内问题的有限元格式。将Kane-Mindl.n假设推广到弹塑性问题,推导了相应的有限元方程.对双边及中心裂纹拉伸试件的计算结果表明,裂纹尖端附近的弹性三维效应区尺寸和板厚相当.对线性硬化弹塑性材料,当切线模量E_t和弹性模量E之比E_t/E大于0.2时,三维效应区在两倍板厚以内.  相似文献   

14.
It is presented an alternative formulation to solve the problem of the deformation analysis for tubular element under pinching loads. The solution is based on a new displacement field defined from a total set of trigonometric functions. The solution is developed in a multi-nodal finite tubular ring element with a total of eight degrees of freedom per section considered. The purpose of this paper is to provide an easy alternative formulation when compared with a complex finite shell element or beam element analysis for the same application. Several case studies presented have been compared and discussed with numerical analyses results reported by other authors and the results obtained with a shell element from a Cosmos/M® programme.  相似文献   

15.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

16.
对曲边柱壳受轴向非均匀内压作用下的大转动几何非线性3-D动力学行为进行了研究.基于Nayfeh and Pai[1]非线性壳体理论,给出了考虑几何非线性的3-D混合型(含内力与位移)动力学模型.为了克服该强非线性模型难以求解的问题,依据分析获得的结构静动态变形关系,采用Lagrange方程推导建立了基于结构静态解的曲边柱壳多自由度3-D动力学方程,并对其进行了线性化与降阶处理,结合差分法获得了一套高效的求解算法.与LS-DYNA有限元结果的吻合,验证了本文方法的正确性.最后分析了单元数和计算时间步分别对有限元模型和本文方法的影响,发现求解精度随着计算时间步的减小不断提高直至趋于稳定.同时对采用本文方法获得的曲边柱壳动态变形模式的分析表明:结构动态响应与其所受内压载荷沿轴向的分布形式关系紧密,可以通过改变或者设计内压轴向分布形式来影响以及控制结构的动态变形模式,从而应用于曲边柱壳结构设计及优化的工程实际中.  相似文献   

17.
有限元法分析轴对称壳体时,常需区分薄壳和厚壳并选用不同的单元,给计算带来不便.为此,通过对现有的轴对称壳体单元的研究,基于加权残值法,将广义协调条件引入剪应变场,构造了一种挠度和转角各自独立的新型轴对称曲壳单元.算例结果表明,新单元具有很高的精度,既可用于厚壳,也可用于薄壳.该单元可用于轴对称壳体结构的计算分析.  相似文献   

18.
The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical analysis of dynamic problems in nonlinear elasticity. The kinematics of this element are consistent with the standard tri-linear approximation in an eight node brick-element. Specifically, the Cosserat point is characterized by eight director vectors which are determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equations for the director couples are determined by derivatives of a strain energy function. Restrictions are imposed on the strain energy function which ensure that the element satisfies a nonlinear version of the patch test. It is shown that the Cosserat balance laws are in one-to-one correspondence with those obtained using a Bubnov–Galerkin formulation. Nevertheless, there is an essential difference between the two approaches in the procedure for obtaining the strain energy function. Specifically, the Cosserat approach determines the constitutive coefficients for inhomogeneous deformations by comparison with exact solutions or experimental data. In contrast, the Bubnov–Galerkin approach determines these constitutive coefficients by integrating the 3-D strain energy function using the kinematic approximation. It is shown that the resulting Cosserat equations eliminate unphysical locking, and hourglassing in large compression without the need for using assumed enhanced strains or special weighting functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号