首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, the free vibration analysis of cylindrical shells with circumferential stiffeners, i.e., rings with nonuniform stiffener eccentricity and unequal stiffener spacing, is investigated using analytical and experimental methods. The Ritz method is applied in analytical solution, while stiffeners are treated as discrete elements. The polynomial functions are used for Ritz functions. The effects of nonuniformity of stiffener distribution on natural frequencies are considered for free–free boundary conditions. Results show that, at constant stiffener mass, significant increments in natural frequencies can be achieved using nonuniform stiffener distribution. In experimental method, modal testing is performed to obtain modal parameters, including natural frequencies, mode shapes, and damping in each mode. Analytical results are compared with experimental ones, showing good agreement. Because of insufficient experimental modal data for nonuniform stiffener distribution, the results of modal testing obtained in this study could be a useful reference for validating the accuracy of other analytical and numerical methods for free vibration analysis.  相似文献   

2.
A novel procedure to perform operational modal analysis on a reduced-scale, 2 m diameter helicopter rotor blade is described. Images of the rotor blade rotating at 900 RPM are captured by a pair of high-speed digital cameras at a sampling rate of 1000 frames per second. From these images, the out-of-plane bending deformation of the rotor blade is measured using Digital Image Correlation, with a spatial resolution of 7.2 mm and an accuracy of 60 μm, or 0.006 % of the rotor radius. Modal parameters including natural frequencies and mode shapes are determined from the bending deformation through application of the Ibrahim Time Domain method. The first three out-of-plane bending modes were identified at each rotational speed and compared to an analytical finite element model of the rotor blade. The experimental and analytical natural frequencies agreed to within 0.2 % in the best case and 10.0 % in the worst case. The experimental mode shapes were also found to closely match the analytical predictions. The results of this study demonstrate the ability of this procedure to accurately determine the modal parameters of rotating helicopter rotor blades.  相似文献   

3.
Analytical expressions are constructed for calculating the natural frequencies and mode shapes of flexural vibrations of a square homogeneous plate clamped along its contour. An error estimate is given by comparing predicted results with those of known high-precision calculations. Also the results of analytical calculations are compared with experimental data obtained by the author using the resonance method. The analytical and corresponding numerical results coincide with the experimental data to within less than 1%.  相似文献   

4.
The natural frequencies and vibration mode shapes of flat plates are simultaneously measured using ESPI. The method involves measuring the surface shape of a vibrating plate at high frame rate using a modified Michelson interferometer and high-speed camera. The vibration is excited here by impact; white (random) noise could alternatively be used. Fourier analysis of the acquired data gives the natural frequencies and associated mode shapes. The analytical procedure used has the advantage that it simultaneously identifies full-field quantitative images of all vibration modes with frequencies up to half the sampling frequency. In comparison, the ESPI time-averaging and the traditional Chladni methods both require that the plate be excited at each natural frequency to allow separate qualitative measurements of the associated mode shapes. The Instrumented Hammer method and Laser Doppler Vibrometry give quantitative measurements but require sequential sampling of individual points on the test surface to provide full-field results. Example ESPI measurements are presented to illustrate the use and capabilities of the proposed plate natural frequency and mode shape measurement method.  相似文献   

5.
This paper presents experimental techniques used in and results obtained during a series of experiments performed to investigate the free-vibration behavior of 15-in. base-diameter spherical and paraboloidal shell models of various geometric parameters and boundary conditions. The models were manufactured from polyvinyl-chloride (P.V.C.) sheets by a thermo-vacuum process using special molds and templates. To provide the necessary excitation power, a variable control amplitude/frequency audio oscillator was used to drive a loudspeaker which was mounted underneath the models. A recently developed noncontact fiber-optics instrument, referred to as the “Fotonic Sensor”, was employed in determining the motion of the models. Thirty-two models of different configurations and boundary conditions were tested in the series. The natural frequencies were observed for all models, while the mode shapes associated with the first four-to-six resonant frequencies were mapped only for some of the models, using special scanning devices.  相似文献   

6.
A systematic procedure for obtaining the closed-form eigensolution for thin circular cylindrical shell vibrations is presented, which utilizes the computational power of existing commercial software packages. For cylindrical shells, the longitudinal, radial, and circumferential displacements are all coupled with each other due to Poissons ratio and the curvature of the shell. For beam and plate vibrations, the eigensolution can often be found without knowledge of absolute dimensions or material properties. For cylindrical shell vibrations, however, one must know the relative ratios between shell radius, length, and thickness, as well as Poissons ratio of the material. The mode shapes and natural frequencies can be determined analytically to within numerically determined coefficients for a wide variety of boundary conditions, including elastic and rigid ring stiffeners at the boundaries. Excellent agreement is obtained when the computed natural frequencies are compared with known experimental results.  相似文献   

7.
In this article, a new method is proposed to determine the mode shapes of linear dynamic systems with proportional viscous damping excited by an impact force. The time signals of responses and a priori knowledge of the natural frequencies are required in this method. The method is particularly suitable for the wavelet techniques which can precisely estimate the natural frequencies. A previously proposed method based on a modified Morlet wavelet function with an adjusting parameter is used to identify the natural frequencies and damping ratios of system, and the mode shapes are estimated using the proposed method in this work. It is shown that the extracted mode shapes are not scaled. Therefore, mass change method is used for scaling the mode shapes. Moreover, the effect of noise on the extracted modal parameters is investigated. The validity of method is demonstrated using numerical and experimental case studies.  相似文献   

8.
Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvatures of mode shapes of the periodic spring-mass system by utilizing the periodic structure theory are derived in this paper. The sensitivities of these mode parameters with respect to structural damages, which do not depend on the physical parameters of the original structures, are obtained. Based on the sensitivity analysis of these mode parameters, a two-stage method is proposed to localize and quantify damages of multi-story or highrise buildings. The slopes and curvatures of mode shapes, which are highly sensitive to local damages,are used to localize the damages. Subsequently, the limited measured natural frequencies, which have a better accuracy than the other mode parameters, are used to quantify the extent of damages within the potential damaged locations. The experimental results of a 3-story experimental building demonstrate that the single or multiple damages of buildings, either slight or severe,can be correctly localized by using only the slope or curvature of mode shape in one of the lower modes, in which the change of natural frequency is the largest, and can be accurately quantified by the limited measured natural frequencies with noise pollution.  相似文献   

9.
Within this paper, an analytical formulation is provided and used to determine the natural frequencies and mode shapes of a planar beam with initial pre-stress and large variable curvature. The static configuration, mode shapes, and natural frequencies of the pre-stressed beam are obtained by using geometrically exact, Euler–Bernoulli beam theory. The beam is assumed to be not shear deformable and inextensible because of its slenderness and uniform, closed cross-section, as well as the boundary conditions under consideration. The static configuration and the modal information are validated with experimental data and compared to results obtained from nonlinear finite-element analysis software. In addition to the modal analysis about general static configurations, special consideration is given to an initially straight beam that is deformed into semi-circular and circular static configurations. For these special circular cases, the partial differential equation of motion is reduced to a sixth-order differential equation with constant coefficients, and solutions of this system are examined. This work can serve as a basis for studying slender structures with large curvatures.  相似文献   

10.
Conclusions A truncated conical shell with free edges can vibrate at resonance both without and with one half-wave along the generatrix. For m=0, the amplitude decreases from the large end faces of the shell toward the small end faces. For m=1, the vibration amplitude decreases from the end faces toward the central portion of the shell. Overlapping of the natural frequencies of various mode shapes of vibration leads to a complex pattern of the node distribution over the shell surface.The author agrees with Watkins and Clary's [5] remarks concerning the need for a new analytical method of solving dynamic problems for cylindrical and conical shells with allowance for the peculiar features of vibrations for various boundary conditions.Kazan Aviation Institute. Translated from Prikladnaya Mekhanika, Vol. 5, No. 1, pp. 113–117, January, 1969.  相似文献   

11.
本文用弹性动力学理论研究横观各向同性圆球壳的轴对称自由扭转振动问题,求出位移和应力的解析表达式,揭示了壳体在子午线方向和半径方向的耦合振动特性,文末算例给出不同几何尺寸和材料性质圆球壳固有频率和振型的数字计算结果.  相似文献   

12.
测量了含45度斜裂纹圆柱薄壳的固有频率并拍摄了相应的激光全息振型图. 实验 表明斜裂纹比轴向和环向裂纹对壳体动态特性的影响更大,致使振型图发生了严重 畸变而显得相当复杂,利用传统思路难以找到裂纹长度对壳体动态特性的影响规律. 为此, 把裂纹周围的振动看作为一种独立的局部振动,从而把含斜裂纹壳体的各种复杂振型划 分为3类:纯局部振动振型、纯原振动振型、局部振动和原振动耦合振型. 其中前两种振型 的固有频率皆随裂纹的加长而降低,但对于耦合振型有时会出现``随裂纹加长频率反而升高 的现象',这是由于把壳体原振动的频率和局部振动的频率相混淆而产生的错觉.  相似文献   

13.
测量了含45°斜裂纹圆柱薄壳的固有频率并拍摄了相应的激光全息振型图.实验表明斜裂纹比轴向和环向裂纹对壳体动态特性的影响更大,致使振型图发生了严重畸变而显得相当复杂,利用传统思路难以找到裂纹长度对壳体动态特性的影响规律.为此,把裂纹周围的振动看作为一种独立的局部振动,从而把含斜裂纹壳体的各种复杂振型划分为3类:纯局部振动振型、纯原振动振型、局部振动和原振动耦合振型.其中前两种振型的固有频率皆随裂纹的加长而降低,但对于耦合振型有时会出现“随裂纹加长频率反而升高的现象”, 这是由于把壳体原振动的频率和局部振动的频率相混淆而产生的错觉.  相似文献   

14.
In the present paper, free vibration of a thin open curved shell with parabolic curvature was studied. This shell has a curvature with variable radius in one direction. The equations of motion of this shell were inferred by first order shell theory. According to perpendicular nature of loading on shell of marine structures, the assumptions of Donnell–Mushtari–Vlasov can be used with an acceptable level of accuracy and the in-plane displacement along shell straight direction “x” can be neglected as compared to the displacement in two other directions. The natural frequencies and mode shapes related to the first five vibrational modes were extracted using semi-analytical methods including power series method, Galerkin method and beam function method. The results of the semi-analytical methods were validated against those obtained by using the finite element method. Out of the studied semi-analytical methods, Galerkin method was found to have an appropriate convergence in both natural frequency and mode shape. Adopting eight terms of the response series, Galerkin method has an appropriate convergence compared with the results of finite element.  相似文献   

15.
16.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

17.
An experimental study of the natural frequencies of a hemispherical thin shell with a clamped edge is described. For the particular shell model studied, the four lowest symmetric modes were identified conclusively by establishing the node-line patterns. The associated natural frequencies were found to be in excellent agreement with theoretical predictions. A great number of higher modes were also excited but could not be conclusively identified due to difficulties in establishing the node-line patterns. The symmetric frequency spectrum up to and including the 23rd mode was, however, established by means of a qualitative argument and showed good correlation with the theoretical spectrum. A number of natural frequencies were found to be present in a particular frequency band for the test shell resulting in a severe crowding in this region. This was found to be in agreement with the more general results for hemispherical shells which indicate that the crowding takes place around a frequency parameterp=1.0.  相似文献   

18.
In this paper we describe the experimental characterization of the modal parameters of a synthetic composite femur model widely used in biomechanical research studies. The objective of the experimental procedure was to identify the natural frequencies and mode shapes of an unconstrained (free-free) femur. The experimental data were compared with the same obtained in an analog study performed with a fresh cadaveric femur bone. Other objective of the study was to investigate modal analysis as a technique to validate a finite element model of a composite femur with isotropic material properties.  相似文献   

19.
Modal analysis of non-uniform bolted structures are of significance in modeling many complex mechanical structures. There are vast literatures available related with the analytical as well as numerical modeling of bolted joint. However, most of the analytical model discuss about the modeling of first mode of uniform structures with single bolted joint. In this paper, we present the modeling of single as well as bolted non-uniform beams using approximate mode shapes. To develop the model, we first carry out experiments to measures the modal frequencies and shapes of the test structures. Subsequently, we also do numerical modeling of non-uniform beams in ANSYS to verify the validity of the Euler-Bernoulli beam theory in developing the analytical models. Finally, using the Euler-Bernoulli beam theory, we obtain the analytical values of frequencies using the approximate the mode shapes. The analytical results are found to be closer to the experimental results with a maximum percentage error of about 15 %. The model presented in the paper can be extended to the mechanical structures with many non-uniform sections with or without bolted joints.  相似文献   

20.
Piezoelectric laminated slightly curved beams (PLSCB) is currently one of the most popular actuators used in smart structure applications due to the fact that these actuators are small, lightweight, quick response and relatively high force output. This paper presents an analytical model of PLSCB, which includes the computation of natural frequencies, mode shapes and transfer function formulation using the distributed transfer function method (DTFM). By setting the radius of curvature of the proposed model to infinity, a piezoelectric laminated straight beams (PLSB) model can be obtained. The DTFM is applied and extended to carry out the transfer function formulation of the PLSCB and PLSB models. This method will be used to solve for the natural frequencies, mode shapes and transfer functions of the PLSCB and PLSB models in exact and closed form solution without using truncated series of particular comparison or admissible functions. The natural frequencies of the cantilevered PLSCB and PLSB are calculated by the DTFM and the Rayleigh–Ritz method. The analysis indicates that the stretching–bending coupling due to curvature has a considerable effect on the frequency parameters. Increasing the radius of curvature of the PLSCB has its largest effect on the natural frequencies. But the inhomogeneity of the boundary conditions does not have any effects on the natural frequencies or system spectrum due to the both receptance and boundary transfer functions have the same characteristic equations. The method can also be generalized to the vibration analysis of non-piezoelectric composite beams with arbitrary boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号