首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel multidimensional characteristic‐based (MCB) upwind method for the solution of incompressible Navier–Stokes equations. As opposed to the conventional characteristic‐based (CB) schemes, it is genuinely multidimensional in that the local characteristic paths, along which information is propagated, are used. For the first time, the multidimensional characteristic structure of incompressible flows modified by artificial compressibility is extracted and used to construct an inherent multidimensional upwind scheme. The new proposed MCB scheme in conjunction with the finite‐volume discretization is employed to model the convective fluxes. Using this formulation, the steady two‐dimensional incompressible flow in a lid‐driven cavity is solved for a wide range of Reynolds numbers. It was found that the new proposed scheme presents more accurate results than the conventional CB scheme in both their first‐ and second‐order counterparts in the case of cavity flow. Also, results obtained with second‐order MCB scheme in some cases are more accurate than the central scheme that in turn provides exact second‐order discretization in this grid. With this inherent upwinding technique for evaluating convective fluxes at cell interfaces, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of MCB scheme lies in its faster convergence rate with respect to the CB scheme that is found to exhibit substantial delays in convergence reported in the literature. The results obtained using new proposed scheme are in good agreement with the standard benchmark solutions in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
传统的一维通量分裂格式在计算界面数值通量时,只考虑网格界面法向的波系。采用传统的TV格式分别求解对流通量和压力通量。通过求解考虑了横向波系影响的角点数值通量来构造一种真正二维的TV通量分裂格式。在计算一维数值算例时,该格式与传统的TV格式具有相同的数值通量计算公式,因此其保留了传统的TV格式精确捕捉接触间断和膨胀激波的优点。在计算二维算例时,该格式比传统的TV格式具有更高的分辨率;在计算二维强激波问题时,消除了传统TV格式的非物理现象,表现出更好的鲁棒性;此外,该格式大大提高了稳定性CFL数,从而具有更高的计算效率。因此,本文方法是一种精确、高效并且具有强鲁棒性的数值方法,在可压缩流的数值模拟中具有广阔的应用前景。  相似文献   

3.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
5.
磁流体方程的数值求解在等离子体物理学、天体物理研究以及流动控制等领域具有重要意义,本文构造了用于求解理想磁流体动力学方程的基于移动网格的熵稳定格式,此方法将Roe型熵稳定格式与自适应移动网格算法结合,空间方向采用熵稳定格式对磁流体动力学方程进行离散,利用变分法构造网格演化方程并通过Gauss-Seidel迭代法对其迭代求解实现网格的自适应分布,在此基础上采用守恒型插值公式实现新旧节点上的量值传递,利用三阶强稳定Runge-Kutta方法将数值解推进到下一时间层。数值实验表明,该算法能有效捕捉解的结构(特别是激波和稀疏波),分辨率高,通用性好,具有强鲁棒性。  相似文献   

6.
In this paper, we use the laminar viscous flow in a lid‐driven cavity as an example to describe and verify a numerical scheme for non‐linear partial differential equations. The proposed scheme combines a new analytical method for strongly non‐linear problems, namely the homotopy analysis method, with the multigrid techniques. A family of formulas at different orders is given. At the lowest order, the current approach is the same as the traditional multigrid methods. However, our high‐order scheme needs a fewer number of iterations and less CPU time than the classical ones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This study proposes a new two‐step three‐time level semi‐Lagrangian scheme for calculation of particle trajectories. The scheme is intended to yield accurate determination of the particle departure position, particularly in the presence of significant flow curvature. Experiments were performed both for linear and non‐linear idealized advection problems, with different flow curvatures. Results for simulations with the proposed scheme, and with three other semi‐Lagrangian schemes, and with an Eulerian method are presented. In the linear advection problem the two‐step three‐time level scheme produced smaller root mean square errors and more accurate replication of the angular displacement of a Gaussian hill than the other schemes. In the non‐linear advection experiments the proposed scheme produced, in general, equal or better conservation of domain‐averaged quantities than the other semi‐Lagrangian schemes, especially at large Courant numbers. In idealized frontogenesis simulations the scheme performed equally or better than the other schemes in the representation of sharp gradients in a scalar field. The two‐step three‐time level scheme has some computational overhead as compared with the other three semi‐Lagrangian schemes. Nevertheless, the additional computational effort was shown to be worthwhile, due to the accuracy obtained by the scheme in the experiments with large time steps. The most remarkable feature of the scheme is its robustness, since it performs well both for small and large Courant numbers, in the presence of weak as well strong flow curvatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Within the mixed FEM, the mini‐element that uses a bubble shape function for the solution of the shallow water wave equations on triangle meshes is simplified to a sparse element formulation. The new formulation has linear shape functions for water levels and constant shape functions for velocities inside each element. The suppression of decoupled spurious solutions is excellent with the new scheme. The linear dispersion relation of the new element has similar advantages as that of the wave equation scheme (generalised wave continuity scheme) proposed by Lynch and Gray. It is shown that the relation is monotonic over all wave numbers. In this paper, the time stepping scheme is included in the dispersion analysis. In case of a combined space–time staggering, the dispersion relation can be improved for the shortest waves. The sparse element is applied in the flow model Bubble that conserves mass exactly. At the same time, because of the limited number of degrees of freedom, the computational efficiency is high. The scheme is not restricted to orthogonal triangular meshes. Three test cases demonstrate the very good accuracy of the proposed scheme. The examples are the classical quarter annulus test case for the linearised shallow water equations, the hydraulic jump and the tide in the Elbe river mouth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a simple and efficient improvement to the famous Swanson–Turkel matrix dissipation model for the central scheme is proposed. In the new matrix dissipation model, the accuracy is improved by eliminating the second‐difference dissipation added to the characteristic fields representing the vorticity waves. This strategy is proposed based on analyzing the flow‐physics about shock‐vortex interaction using the Rankine–Hugoniot jump condition. In this paper, the behavior of central scheme for rotational flow is also theoretically and numerically analyzed. Results show a newfound problem of the original scalar and matrix dissipation models, in which for rotational flow excessive second‐difference dissipation is added due to the pressure‐based shock sensor. With current new matrix dissipation model improved accuracy is obtained at minimal cost overhead, especially, in the highly vortical region where the second‐difference dissipation is reduced. At the same time, it preserves the excellent shock capturing capability and convergence speed of original method. Numerical properties of this new matrix dissipation model are validated with a series of numerical experiments and results comparison with original model verifies improved performance of current method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
有限谱ENO格式及其应用   总被引:2,自引:0,他引:2  
首先对王健平提出的有限谱法^[1-3]做了进一步的理论研究,发现了一些新的有限谱法的插值基函数组,并互将有限谱法应用在ENO格式中,构造了有限谱ENO计算格式,然后通过对一维Euler方程的几个经典的模型问题和二维湍流与弱激波相互作用问题的数值计算,并且与理论解或准精确解进行比较分析,从而表明了此格式对于激波和其他间断具有较高的分辨率,在激波附近基本上没有明显的数值振荡,而且对于流场中的细致结构也具有相当高的精度。  相似文献   

14.
We propose a new two‐dimensional numerical scheme to solve the Saint‐Venant system of shallow water equations in the presence of partially flooded cells. Our method is well balanced, positivity preserving, and handles dry states. The latter is ensured by using the draining time step technique in the time integration process, which guarantees non‐negative water depths. Unlike previous schemes, our technique does not generate high velocities at the dry/wet boundaries, which are responsible for small time step sizes and slow simulation runs. We prove that the new scheme preserves ‘lake at rest’ steady states and guarantees the positivity of the computed fluid depth in the partially flooded cells. We test the new scheme, along with another recent scheme from the literature, against the analytical solution for a parabolic basin and show the improved simulation performance of the new scheme for two real‐world scenarios. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
8阶群速度控制格式及其应用   总被引:1,自引:0,他引:1  
构造了8阶精度的群速度控制型差分格式.根据激波捕捉能力及对小尺度分辨能力对格式系数进行了优化.采用该格式对可压缩均匀各向同性湍流进行了直接数值模拟,所计算的最大湍流马赫数达到0.95.相同计算条件下的结果与他人结果吻合较好,说明了格式在捕捉激波的同时对湍流小尺度有较好的分辨能力.  相似文献   

16.
为更准确捕捉复杂流场的流动细节,通过对WENO格式的光滑因子进行改进,发展了一种新的五阶WENO格式。对三阶ENO格式进行加权可以得到五阶WENO格式,但是不同的加权处理,WENO格式在极值处保持加权基本无振荡的效果不同,本文构造了二阶精度的局部光滑因子,及不含一阶二阶导数的高阶全局光滑因子,从而实现WENO格式在极值处有五阶精度。基于改进五阶WENO格式,对一维对流方程、一维和二维可压缩无粘问题进行算例验证,并与传统WENO-JS格式和WENO-Z格式进行比较。计算结果表明,改进五阶WENO格式有较高的精度和收敛速度,有较低的数值耗散,能有效捕捉间断、激波和涡等复杂流动。  相似文献   

17.
研究了无网格算法中的附面层修正方法,在一种布置点云方法的基础上,发展一种曲面拟合的重构方式构造流场物理量;找出了无网格算法与网格算法之间的联系,成功将AUSM+-up格式移植到无网格算法当中,并应用于计算欧拉方程的数值通量;计算中采用了一种改进的隐式时间推进,并引入当地时间步长和残值光顺等加速收敛措施,成功的将附面层修...  相似文献   

18.
In this paper, we propose a new lattice Boltzmann model for the compressible Navier–Stokes equations. The new model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. As the 25‐bit model, we obtained the equilibrium distribution functions and the compressible Navier–Stokes equations with the second accuracy of the truncation errors. The numerical examples show that the model can be used to simulate the shock waves, contact discontinuities and supersonic flows around circular cylinder. The numerical results are compared with those obtained by traditional method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, first‐order upwind implicit schemes are considered. The traditional tridiagonal scheme is rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for unsteady transcritical flows. On the other hand, the origin of the instabilities associated to the use of upwind implicit methods for shock propagations is identified and a new stability condition for non‐linear problems is proposed. This modification produces a robust, simple and accurate upwind semi‐explicit scheme suitable for discontinuous flows with high Courant–Friedrichs–Lewy (CFL) numbers. The discretization at the boundaries is based on the condition of global mass conservation thus enabling a fully conservative solution for all kind of boundary conditions. The performance of the proposed technique will be shown in the solution of the inviscid Burgers' equation, in an ideal dambreak test case, in some steady open channel flow test cases with analytical solution and in a realistic flood routing problem, where stable and accurate solutions will be presented using CFL values up to 100. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Viscous waves and waves over a submerged cylinder in a stationary tank are simulated using a volume-of-fluid numerical scheme on adaptive hierarchical grids. A high resolution interface-capturing method is used to advect the free surface interface and the Navier–Stokes equations are discretised using finite volumes with collocated primitive variables and solved using a Pressure Implicit with Splitting of Operators (PISO) algorithm. The cylinder is modelled by using the technique of Cartesian cut cells. Results of flow of a single fluid past a cylinder at Reynolds number Re=100 are presented and found to agree well with experimental and other numerical data. Viscous free surface waves in a tank are simulated using uniform and quadtree grids for Reynolds numbers in the range from 2 to 2000, and the results compared against analytical solutions where available. The quadtree-based results are of the same accuracy as those on the equivalent uniform grids, and retain a sharp interface at the free surface while leading to considerable savings in both storage and CPU requirements. The nonlinearity in the wave is investigated for a selection of initial wave amplitudes. A submerged cylinder is positioned in the tank and its influence on the waves as well as the hydrodynamic loading on the cylinder is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号