首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尹刚 《计算力学学报》2008,25(6):917-920
柱体扭转的基本方程为非齐次偏微分方程,在极坐标系下,利用分离变量法及傅立叶级数展开法,求出了扭转应力函数,进一步即可计算出扇形截面杆在外力偶作用下,扭转角和横截面上剪应力的精确解答。这种方法为精确解法,在各种机械及其他工程设备中,对受扭转作用的扇形截面杆设计,有一定实用价值。  相似文献   

2.
Limit analysis of prismatic torsion bars was the earliest attempt to apply plasticity theory to a continuum. The simplicity of the problem made it feasible to use the two-dimensional Prandtl stress function, defined for the elastic torsion problems, for the plastic stress distributions as well. The gradient of the stress functions for plastic torsion has a constant magnitude, and hence a function of this type assumes the profile of a sand hill. This sand hill analogy of Nadai (1950, The Theory of Flow and Fracture of Solids. McGraw-Hill, U.K.) gave a visual sense of possible nonsmoothness of such stress functions and thus discontinuous stress fields. Many stress functions of plastic torsion for relatively simple cross-sections have been constructed graphically. However, collapse modes in terms of warping functions were much less reported. In this paper, we shall establish a duality theorem which relates the correct stress function to the correct warping function, thus providing the means to obtain complete static and kinematic solutions. This dual variational principle leads naturally to a general numerical algorithm which guarantees convergence and accuracy. In this paper, we shall only present three exact solutions to verify the theorem, to demonstrate the possible non-smooth feature of the solutions and to reiterate this effective dual variational approach to limit analysis in general.  相似文献   

3.
In this paper a boundary element method is developed for the inelastic nonuniform torsional problem of simply or multiply connected prismatic bars of arbitrarily shaped doubly symmetric cross section, taking into account the secondary torsional moment deformation effect. The bar is subjected to arbitrarily distributed or concentrated torsional loading along its length, while its edges are subjected to the most general torsional boundary conditions. A displacement based formulation is developed and inelastic redistribution is modeled through a distributed plasticity model exploiting three dimensional material constitutive laws and numerical integration over the cross sections. An incremental–iterative solution strategy is adopted to resolve the elastic and plastic part of stress resultants along with an efficient iterative process to integrate the inelastic rate equations. The one dimensional primary angle of twist per unit length, a two dimensional secondary warping function and a scalar torsional shear correction factor are employed to account for the secondary torsional moment deformation effect. The latter is computed employing an energy approach under elastic conditions. Three boundary value problems with respect to (i) the primary warping function, (ii) the secondary warping one and (iii) the total angle of twist coupled with its primary part per unit length are formulated and numerically solved employing the boundary element method. Domain discretization is required only for the third problem, while shear locking is avoided through the developed numerical technique. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.  相似文献   

4.
导出了扇形截面杆扭转问题偏微分方程的差分线法常微分方程组, 并解析求解了该方程组, 得到了扭转应力函数的半解析解, 计算了扭转应力及扭转刚度. 计算过程中, 用追赶法计算 常微分方程组的特解, 用公式计算三对角矩阵的特征值与特征向量, 利用实对阵矩阵的特征 向量相互正交的特性避免矩阵求逆计算, 利用复化梯形公式计算扭转刚度. 整个求解过程在 角度方向离散微分方程和用复化梯形公式进行面积积分时引入了误差, 其他求解过程是精确 的. 计算结果与已有结果进行了对比, 显示了算法的正确性. 该算法对工程中扇形截面扭 转杆的设计有一定的实用价值.  相似文献   

5.
Summary A boundary integral equation method is proposed for approximate numerical and exact analytical solutions to fully developed incompressible laminar flow in straight ducts of multiply or simply connected cross-section. It is based on a direct reduction of the problem to the solution of a singular integral equation for the vorticity field in the cross section of the duct. For the numerical solution of the singular integral equation, a simple discretization of it along the cross-section boundary is used. It leads to satisfactory rapid convergency and to accurate results. The concept of hydrodynamic moment of inertia is introduced in order to easily calculate the flow rate, the main velocity, and the fRe-factor. As an example, the exact analytical and, comparatively, the approximate numerical solution of the problem of a circular pipe with two circular rods are presented. In the literature, this is the first non-trivial exact analytical solution of the problem for triply connected cross section domains. The solution to the Saint-Venant torsion problem, as a special case of the laminar duct-flow problem, is herein entirely incorporated.  相似文献   

6.
王兆强  赵金城 《力学学报》2011,43(5):963-967
以Vlasov薄壁构件理论为基础, 推导了开口薄壁构件一阶扭转理论. 该理论考虑了翘曲剪应力对截面转角的影响, 截面的转角分为自由翘曲转角和约束剪切转角, 在约束扭转中, St.Venant扭矩仅仅与自由翘曲转角有关, 而翘曲扭矩仅与约束剪切转角有关. 利用半逆解方法求出了约束扭转中薄壁构件的St.Venant扭矩表达公式; 依据能量方法, 建立了约束剪切转角和翘曲扭矩之间的关系, 并提出了翘曲剪切系数概念, 给出了一阶扭转理论的微分方程. 为了有效求解微分方程, 给出了求解微分方程的初参数法方程和相应的影响函数矩阵; 当St.Venant扭矩可以忽略时, 得到与一阶弯曲理论(Timoshenko梁理论)相似的一阶扭转理论简化形式. 最后利用算例证明了一阶扭转理论和简化理论的有效性.   相似文献   

7.
Pure torsion of shape memory alloy (SMA) bars with circular cross section is studied by considering the effect of temperature gradient in the cross sections as a result of latent heat generation and absorption during forward and reverse phase transformations. The local form of energy balance for SMAs by taking into account the heat flux effect is coupled to a closed-form solution of SMA bars subjected to pure torsion. The resulting coupled thermo-mechanical equations are solved for SMA bars with circular cross sections. Several numerical case studies are presented and the necessity of considering the coupled thermo-mechanical formulation is demonstrated by comparing the results of the proposed model with those obtained by assuming an isothermal process during loading–unloading. Pure torsion of SMA bars in various ambient conditions (free and forced convection of air, and forced convection of water flow) subjected to different loading–unloading rates are studied and it is shown that the isothermal solution is valid only for specific combinations of ambient conditions and loading rates.  相似文献   

8.
Summary This paper deals with the torsion problem of composite bars with L- or cruciform section. Using the function which is the conjugate harmonic function to the warping function of the torsion problem, the governing equation for the torsion problem is obtainable. The problem can be easily solved by using a partitioning plan and the series solution of Dirichlet's problem of the Laplace equation on the rectangle. Two examples with numerically calculated results of the torsional rigidity are presented for exemplification.
Das Torsionsproblem von Stäben aus Verbundwerkstoff mit L- oder kreuzförmigem Querschnitt
Übersicht Gegenstand der Untersuchung ist das Torsionsproblem von Stäben aus Verbundwerkstoff mit L- oder kreuzförmigem Querschnitt. Mit der Funktion, die konjugiert harmonisch zur Wölbfunktion ist, läßt sich die Grundgleichung für das Torsionsproblem gewinnen. Mit einem Unterteilungsplan und der Reihenlösung des Dirichletschen Problems der Laplace-Gleichung über einem Rechteck läßt sich die gestellte Aufgabe leicht lösen. Zwei Beispiele mit numerischen Ergebnissen für die Torsionssteifigkeit werden exemplarisch vorgestellt.
  相似文献   

9.
In this paper, the pseudoelastic response of shape memory alloy (SMA) helical springs under axial force is studied both analytically and numerically. In the analytical solution two different approximations are considered. In the first approximation, both the curvature and pitch effects are assumed to be negligible. This is the case for helical springs with large ratios of mean coil radius to the cross sectional radius (spring index) and small pitch angles. Using this assumption, analysis of the helical spring is reduced to that of the pure torsion of a straight bar with circular cross section. A three-dimensional phenomenological macroscopic constitutive model for polycrystalline SMAs is reduced to the one-dimensional pure shear case and a closed-form solution for torsional response of SMA bars in loading and unloading is obtained. In the next step, the curvature effect is included and the SMA helical spring is analyzed using the exact solution presented for torsion of curved SMA bars. In this refined solution, the effect of the direct shear force is also considered. In the numerical analyses, the three-dimensional constitutive equations are implemented in a finite element method and using solid elements the loading–unloading of an SMA helical spring is simulated. Analytical and numerical results are compared and it is shown that the solution based on the SMA curved bar torsion gives an accurate stress analysis in the cross section of the helical SMA spring in addition to the global load–deflection response. All the results are compared with experimental data for a Nitinol helical spring. Several case studies are presented using the proposed analytical and numerical solutions and the effect of changing different parameters such as the material properties and temperature on the loading–unloading hysteretic response of SMA helical springs is studied. Finally, some practical recommendations are given for improving the performance of SMA helical springs used as energy dissipating devices, for example for seismic applications.  相似文献   

10.
The problem of determining the elastoplastic properties of a prismatic bar from the given experimental relation between the torsional moment M and the angle of twist per unit length of the rod’s length θ is investigated as an inverse problem. The proposed method to solve the inverse problem is based on the solution of some sequences of the direct problem by applying the Levenberg-Marquardt iteration method. In the direct problem, these properties are known, and the torsional moment is calculated as a function of the angle of twist from the solution of a non-linear boundary value problem. This non-linear problem results from the Saint-Venant displacement assumption, the Ramberg–Osgood constitutive equation, and the deformation theory of plasticity for the stress–strain relation. To solve the direct problem in each iteration step, the Kansa method is used for the circular cross section of the rod, or the method of fundamental solutions (MFS) and the method of particular solutions (MPS) are used for the prismatic cross section of the rod. The non-linear torsion problem in the plastic region is solved using the Picard iteration.  相似文献   

11.
übersicht Das St. Venantsche Torsionsproblem wird auf eine Fredholmsche Integralgleichung 2. Art zurückgeführt. Als unbekannte Funktion tritt dabei eine Singularit?tenverteilung auf. Die Integralgleichung wird für prismatische St?be numerisch gel?st. Ist die Singularit?tenverteilung bekannt, so k?nnen Spannungs- und Verformungszustand berechnet werden. Um die Brauchbarkeit des Verfahrens zu zeigen, werden in einigen Beispielen die Ergebnisse mit denen der exakten L?sungen verglichen.
Summary The St. Venant's torsion problem is reduced to a Fredholm integral equation of the second kind with a distribution of singularities as unknown function. This equation is solved numerically for prismatic bars. The state of tension and displacement can be computed if the distribution of singularities is given. To illustrate the usefullness of the procedure some examples are given and their results are compared with those of the exact solution.
  相似文献   

12.
This paper considers the compensation of torsional deformations in rods with the help of thin integrated piezoelectric actuator layers. A laminated orthotropic rod is considered, for which the material properties of each layer are assumed to be homogenous. For the sake of a generalization, the piezoelectric actuation is expressed in terms of eigenstrains. The main scope is the derivation of a distribution of eigenstrains that is able to completely compensate the angle of twist caused by external torsional moments. Saint Venant’s theory of torsion for laminated orthotropic rods is extended for the presence of eigenstrains, which is performed by introducing an additional warping function. It is shown that the actuating torsional moment is a function of the eigenstrains and the additional warping function. For the example of a rectangular cross section, an analytic solution for the actuating moment and the additional warping function is presented. The results are verified by three-dimensional finite-element computations showing a very good accordance with the theoretical results over a large parameter range.  相似文献   

13.
The method of reflected caustics was extended to the study of elastic fields due to body forces. It was shown that gage perforations create caustics under the influence of body forces which are different in shape and size than those developed in usual cases. The elastic solution of a perforated strip under the influence of an external loadp and body forcesqy was developed by defining a two-term Muskhelishvili complex stress function (z). The equations of the caustics and their initial curves were established. It was shown that as the body force intensity,q, was increased relative to the external loading,p, the classical two-lobe caustic for perforated strips without body forces evoluted to an open curve and, for a further increase ofq, to a three-lobe caustic. As the body force to external force ratio was increased this third lobe was rapidly increased, relative to the two principal lobes, whereas the position of the center of the caustic was displaced along the loading axis. The maximum diametersD t of the caustics along the loading axis of the plate yield enough information for evaluating the body force intensity, if the mechanical properties of the material and the geometry of the optical set-up are known.  相似文献   

14.
An appropriate strain energy density for an isotropic hyperelastic Hookean material is proposed for finite strain from which a constitutive relationship is derived and applied to problems involving beam theory approximations. The physical Lagrangian stress normal to the surfaces of a element in the deformed state is a function of the normal component of stretch while the shear is a function of the shear component of stretch. This paper attempts to make a contribution to the controversy about who is correct, Engesser or Haringx with regard to the buckling formula for a linear elastic straight prismatic column with Timoshenko beam-type shear deformations. The derived buckling formula for a straight prismatic column including shear and axial deformations agrees with Haringx’s formula. Elastica-type equations are also derived for a three-dimensional Timoshenko beam with warping excluded. When the formulation is applied to the problem of pure torsion of a cylinder no second-order axial shortening associated with the Wagner effect is predicted which differs from conventional beam theory. When warping is included, axial shortening is predicted but the formula differs from conventional beam theory.  相似文献   

15.
The problem of the torsion and tension-compression of a prismatic bar with a stress-free lateral surface is studied using three-dimensional elasticity theory for materials with moment stresses. A substitution is found that allows one to separate one variable in the nonlinear equilibrium equations for a Cosserat continuum and boundary conditions on the lateral surface. This substitution reduces the original spatial problem of the equilibrium of a micropolar body to a two-dimensional nonlinear boundary-value problem for a plane region shaped like the cross section of the prismatic bar. Variational formulations of the two-dimensional problem for the section are given that differ in the sets of varied functions and the constraints imposed on their boundary values. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 167–175, July–August, 2006.  相似文献   

16.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

17.
Übersicht Mit Hilfe eines neuen Verfahrens gelingt die Lösung des Torsionsproblems für beliebige Querschnitte. Die Strukturgleichheit der beschreibenden Differentialgleichung erlaubt die Verwendung bekannter Algorithmen für die Wärmeleitung. Wegen der zugrunde liegenden Randintegralformulierung genügt die Beschreibung der Randkontur der Querschnittsfläche; damit ist die Anbindung an CAD-Systeme problemlos möglich.
Torsion of prismatic shafts of multiconnected cross section: a boundary element solution
Summary The novel technique is capable of dealing with torsion of shafts of any arbitrary prismatic cross section. Owing to the similar structure of the governing equations of torsion and heat conduction, the well known algorithms of heat conduction can be employed. The formulation contains solely boundary integrals thus, it is enough to define only the contours of the cross section area. Coupling of the proposed technique with CAD systems is therefore straightforward.
  相似文献   

18.
The equilibrium and buckling equations are derived for the lateral buckling of a prismatic straight beam. A consistent finite strain constitutive law is used, which is based on a hyperelastic model for an isotropic material. The kinematics of the cross-sectional deformations are based on a Timoshenko type beam displacement of the cross-sectional plane using Euler angles and two shear finite rotations coupled with warping taken normal to the displaced plane. Also derived are the second order approximations to the displacements, curvatures, twist and internal actions. The constitutive relationships for the internal actions reveal new coupling terms between the bending moments, torsion and bimoment, which are functions of the cross-sectional warping and shear deformations. New Wagner type nonlinear torsion terms are derived which are functions of the warping of the cross-sectional plane, and are coupled to the twisting and shear deformations of the cross-section. Solutions are determined for the lateral buckling of a prismatic monosymmetric beam under pure bending and the flexural–torsional buckling under axial compression. For the flexural–torsional buckling problem it is found that the Euler type column buckling formula is consistent with Haringx’s column buckling formula while the torsional buckling formula is different to conventional equations. The second variation of the total potential is also derived. The effects of shear deformations are explored by examining the non-dimensional lateral buckling equation for a simply supported beam.  相似文献   

19.
This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropic layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint-Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.  相似文献   

20.
龚耀清  陶赛 《力学与实践》2016,38(6):664-669
为了分析开口厚壁截面短构件的约束扭转问题,采用统一分析梁模型与有限节线法,对T形和L形厚壁截面短构件约束扭转时横截面的翘曲和应力分布情况等问题进行了分析研究.算例计算结果表明:开口厚壁截面短构件存在与其横截面形心位置不一致的扭转(弯曲)中心,构件在不过扭转中心的外力作用下会产生弯扭耦合变形,其横截面将产生不均匀翘曲,横截面上的翘曲正应力和扭转剪应力均呈非线性分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号