首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present a new non‐intrusive model reduction method for the Navier–Stokes equations. The method replaces the traditional approach of projecting the equations onto the reduced space with a radial basis function (RBF) multi‐dimensional interpolation. The main point of this method is to construct a number of multi‐dimensional interpolation functions using the RBF scatter multi‐dimensional interpolation method. The interpolation functions are used to calculate POD coefficients at each time step from POD coefficients at earlier time steps. The advantage of this method is that it does not require modifications to the source code (which would otherwise be very cumbersome), as it is independent of the governing equations of the system. Another advantage of this method is that it avoids the stability problem of POD/Galerkin. The novelty of this work lies in the application of RBF interpolation and POD to construct the reduced‐order model for the Navier–Stokes equations. Another novelty is the verification and validation of numerical examples (a lock exchange problem and a flow past a cylinder problem) using unstructured adaptive finite element ocean model. The results obtained show that CPU times are reduced by several orders of magnitude whilst the accuracy is maintained in comparison with the corresponding high‐fidelity models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents reduced order modelling (ROM) in fluid–structure interaction (FSI). The ROM via the proper orthogonal decomposition (POD) method has been chosen, due to its efficiency in the domain of fluid mechanics. POD-ROM is based on a low-order dynamical system obtained by projecting the nonlinear Navier–Stokes equations on a smaller number of POD modes. These POD modes are spatial and temporally independent. In FSI, the fluid and structure domains are moving, owing to which the POD method cannot be applied directly to reduce the equations of each domain. This article proposes to compute the POD modes for a global velocity field (fluid and solid), and then to construct a low-order dynamical system. The structure domain can be decomposed as a rigid domain, with a finite number of degrees of freedom. This low-order dynamical system is obtained by using a multiphase method similar to the fictitious domain method. This multiphase method extends the Navier–Stokes equations to the solid domain by using a penalisation method and a Lagrangian multiplier. By projecting these equations on the POD modes obtained for the global velocity field, a nonlinear low-order dynamical system is obtained and tested on a case of high Reynolds number.  相似文献   

3.
Stabilized finite element methods have been shown to yield robust, accurate numerical solutions to both the compressible and incompressible Navier–Stokes equations for laminar and turbulent flows. The present work focuses on the application of higher‐order, hierarchical basis functions to the incompressible Navier–Stokes equations using a stabilized finite element method. It is shown on a variety of problems that the most cost‐effective simulations (in terms of CPU time, memory, and disk storage) can be obtained using higher‐order basis functions when compared with the traditional linear basis. In addition, algorithms will be presented for the efficient implementation of these methods within the traditional finite element data structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The main purpose of this article is to develop a forced reduced‐order model based on the proper orthogonal decomposition (POD)/Galerkin projection (on isentropic Navier‐Stokes equations) and perturbation method on the compressible Navier‐Stokes equations. The resulting forced reduced‐order model will be used in optimal control of the separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 800, and high incidence angle of 24°. The main disadvantage of the POD/Galerkin projection method for control purposes is that controlling parameters do not show up explicitly in the resulting reduced‐order system. The perturbation method and POD/Galerkin projection on the isentropic Navier‐Stokes equations introduce a forced reduced‐order model that can predict the time varying influence of the controlling parameters and the Navier‐Stokes response to external excitations. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order system, which attempts to minimize the vorticity content in the flow field. The test bed is a laminar flow over NACA23012 airfoil actuated by a suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. The results show that wall jet can significantly influence the flow field, remove separation bubbles, and increase the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate manner.  相似文献   

5.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The passive control of bluff body flows using porous media is investigated by means of the penalization method. This method is used to create intermediate porous media between solid obstacles and the fluid in order to modify the boundary layer behaviour. The study covers a wide range of two‐dimensional flows from low transitional flow to fully established turbulence by direct numerical simulation of incompressible Navier–Stokes equations. A parametric study is performed to illustrate the effect of the porous layer permeability and thickness on the passive control. The numerical results reveal the ability of porous media to both regularize the flow and to reduce the drag forces up to 30%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A proper orthogonal decomposition (POD)‐based reduced‐order model of the parabolized Navier–Stokes (PNS) equations is derived in this article. A space‐marching finite difference method with time relaxation is used to obtain the solution of this problem, from which snapshots are obtained to generate the POD basis functions used to construct the reduced‐order model. In order to improve the accuracy and the stability of the reduced‐order model in the presence of a high Reynolds number, we applied a Sobolev H1 norm calibration to the POD construction process. Finally, some numerical tests with a high‐fidelity model as well as the POD reduced‐order model were carried out to demonstrate the efficiency and the accuracy of the reduced‐order model for solving the PNS equations compared with the full PNS model. Different inflow conditions and different selections of snapshots were experimented to test the POD reduction technique. The efficiency of the H1 norm POD calibration is illustrated for the PNS model with increasingly higher Reynolds numbers, along with the optimal dissipation coefficient derivation, yielding the best root mean square error and correlation coefficient between the full and reduced‐order PNS models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A principal interval decomposition (PID) approach is presented for the reduced‐order modeling of unsteady Boussinesq equations. The PID method optimizes the lengths of the time windows over which proper orthogonal decomposition (POD) is performed and can be highly effective in building reduced‐order models for convective problems. The performance of these POD models with and without using the PID approach is investigated by applying these methods to the unsteady lock‐exchange flow problem. This benchmark problem exhibits a strong shear flow induced by a temperature jump and results in the Kelvin–Helmholtz instability. This problem is considered a challenging benchmark problem for the development of reduced‐order models. The reference solutions are obtained by direct numerical simulations of the vorticity and temperature transport equations using a compact fourth‐order‐accurate scheme. We compare the accuracy of reduced‐order models developed with different numbers of POD basis functions and different numbers of principal intervals. A linear interpolation model is constructed to obtain basis functions when varying physical parameters. The predictive performance of our models is then analyzed over a wide range of Reynolds numbers. It is shown that the PID approach provides a significant improvement in accuracy over the standard Galerkin POD reduced‐order model. This numerical assessment of the PID shows that it may represent a reliable model reduction tool for convection‐dominated, unsteady‐flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a new lattice Boltzmann model for the compressible Navier–Stokes equations. The new model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. As the 25‐bit model, we obtained the equilibrium distribution functions and the compressible Navier–Stokes equations with the second accuracy of the truncation errors. The numerical examples show that the model can be used to simulate the shock waves, contact discontinuities and supersonic flows around circular cylinder. The numerical results are compared with those obtained by traditional method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We present a systematic derivation of a discrete dynamical system directly from the two‐dimensional incompressible Navier–Stokes equations via a Galerkin procedure and provide a detailed numerical investigation (covering more than 107 cases) of the characteristic behaviours exhibited by the discrete mapping for specified combinations of the four bifurcation parameters. We show that this simple 2‐D algebraic map, which consists of a bilinearly coupled pair of logistic maps, can produce essentially any (temporal) behaviour observed either experimentally or computationally in incompressible Navier–Stokes flows as the bifurcation parameters are varied in pairs over their ranges of stable behaviours. We conclude from this that such discrete dynamical systems deserve consideration as sources of temporal fluctuations in synthetic‐velocity forms of subgrid‐scale models for large‐eddy simulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The paper deals with the numerical solution of fluid dynamics using the boundary‐domain integral method (BDIM). A velocity–vorticity formulation of the Navier–Stokes equations is adopted, where the kinematic equation is written in its parabolic form. Computational aspects of the numerical simulation of two‐dimensional flows is described in detail. In order to lower the computational cost, the subdomain technique is applied. A preconditioned Krylov subspace method (PKSM) is used for the solution of systems of linear equations. Level‐based fill‐in incomplete lower upper decomposition (ILU) preconditioners are developed and their performance is examined. Scaling of stopping criteria is applied to minimize the number of iterations for the PKSM. The effectiveness of the proposed method is tested on several benchmark test problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A simplified approach to simulate turbulent flows in curved channels is proposed. A set of governing equations of motion in Cartesian coordinates is derived from the full Navier–Stokes equations in cylindrical coordinates. Terms to first order in the dimensionless curvature parameter are retained, whereas higher‐order terms are neglected. The curvature terms are implemented in a conventional Navier–Stokes code using Cartesian coordinates. Direct numerical simulations (DNS) of turbulent flow in weakly curved channels are performed. The pronounced asymmetries in the mean flow and the turbulence statistics observed in earlier DNS studies are faithfully reproduced by the present simplified Navier–Stokes model. It is particularly rewarding that also distinct pairs of counter‐rotating streamwise‐oriented vortices are embedded in the simulated flow field. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes the development of a semi‐Lagrangian computational method for simulating complex 3D two phase flows. The Navier–Stokes equations are solved separately in both fluids using a robust pseudo‐compressibility method able to deal with high density ratio. The interface tracking is achieved by the segment Lagrangian volume of fluid (SL‐VOF) method. The 2D SL‐VOF method using the concepts of VOF, piecewise linear interface calculation (PLIC) and Lagrangian advection of the interface is herein extended to 3D flows. Three different test cases of SL‐VOF 3D are presented for validation and comparison either with 2D flows or with other numerical methods. A good agreement is observed in each case. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
金晓威  赖马树金  李惠 《力学学报》2021,53(10):2616-2629
流体运动理论上可用Navier?Stokes方程描述, 但由于对流项带来的非线性, 仅在少数情况可求得方程解析解. 对于复杂工程流动问题, 数值模拟难以高效精准计算高雷诺数流场, 实验或现场测量难以获得流场丰富细节. 近年来, 人工智能技术快速发展, 深度学习等数据驱动技术可利用灵活网络结构, 借助高效优化算法, 获得对高维、非线性问题的强大逼近能力, 为研究流体力学计算方法带来新机遇. 有别于传统图像识别、自然语言处理等典型人工智能任务, 深度学习模型预测的流场需满足流体物理规律, 如Navier?Stokes方程、典型能谱等. 近期, 物理增强的流场深度学习建模与模拟方法快速发展, 正逐渐成为流体力学全新研究范式: 根据流体物理规律选取网络输入特征或设计网络架构的方法称为物理启发的深度学习方法, 直接将流体物理规律显式融入网络损失函数或网络架构的方法称为物理融合的深度学习方法. 研究内容涵盖流体力学降阶模型、流动控制方程求解领域.   相似文献   

19.
Fluid flows are very often governed by the dynamics of a mall number of coherent structures, i.e., fluid features which keep their individuality during the evolution of the flow. The purpose of this paper is to study a low order simulation of the Navier–Stokes equations on the basis of the evolution of such coherent structures. One way to extract some basis functions which can be interpreted as coherent structures from flow simulations is by Proper Orthogonal Decomposition (POD). Then, by means of a Galerkin projection, it is possible to find the system of ODEs which approximates the problem in the finite-dimensional space spanned by the POD basis functions. It is found that low order modeling of relatively complex flow simulations, such as laminar vortex shedding from an airfoil at incidence and turbulent vortex shedding from a square cylinder, provides good qualitative results compared with reference computations. In this respect, it is shown that the accuracy of numerical schemes based on simple Galerkin projection is insufficient and numerical stabilization is needed. To conclude, we approach the issue of the optimal selection of the norm, namely the H 1 norm, used in POD for the compressible Navier–Stokes equations by several numerical tests. Received 21 April 1999 and accepted 18 November 1999  相似文献   

20.
In this paper, the aim is to present the results of a new approach for the asymptotic modeling of two-dimensional steady, incompressible, laminar flows in a channel. More precisely, for high Reynolds numbers, the walls of the channel are deformed in such a way that separation is possible. Of course, numerical solutions of Navier–Stokes equations can be calculated but it is believed that an asymptotic analysis helps in the understanding of the flow structure. Numerical solutions of Navier–Stokes equations are compared with solutions of asymptotic models included in a more general model called global interactive boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号