首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reflection and refraction pattern of elastic waves at a corrugated interface between two triclinic half-spaces is discussed. The incident wave is taken to be the cause of the interface disturbance and the reflected and refracted waves are effects. This leads to the causality requirement that the reflected and refracted waves must propagate away from the interface. Closed form expressions of reflection and transmission coefficients are derived using Rayleigh’s method of approximation. The formulae of reflection and transmission coefficients are derived in closed form for the first-order approximation of the corrugation. The analytical expressions of all the three phase velocities of qP, qSV and qSH waves have been derived. The variation of reflection and refraction coefficients with the angle of incidence and also with the corrugation parameter is shown. In this paper we have developed Graphical User Interface (GUI) Software in MATLAB which shows the variation of reflection and refraction coefficients with respect to incident angle and corrugation parameter. This software can be generalized to show the variation of reflection and refraction coefficients. Numerical computations are performed for a scientific model and the results obtained are shown graphically.  相似文献   

2.
The present study deals with reflection and transmission of plane waves between two different fluid-saturated porous half-spaces, where longitudinal and transversal waves impinge obliquely onto the interface. Amplitude ratios of various reflected and transmitted waves are obtained. Variations of amplitude ratios with the angle of incidence are depicted graphically. A particular case of reflection at the free surface of the fluid-saturated porous half-spaces is discussed.  相似文献   

3.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

4.
Reflection and transmission coefficients due to incident plane SH-waves at a corrugated interface between two isotropic, laterally and vertically heterogeneous visco-elastic solid half spaces are obtained. The density and complex rigidity of each medium are considered to vary along horizontal and vertical directions. Closed form expressions of reflection and transmission coefficients are derived using Rayleigh’s method of approximation. These coefficients are found to be the function of corrugation, heterogeneity, angle of incidence, angle between propagation and attenuation vectors and visco-elasticity of the media. Numerical computations are made for a specific model to study the nature of dependence of these coefficients. Variations of reflection and transmission coefficients for the first order of approximation of the corrugation versus angle of incidence, corrugation and angle between propagation and attenuation vectors are computed and depicted graphically. Comparison is made between these coefficients in viscoelastic media and in uniform elastic media. The problems investigated earlier by Asano [Bull. Earthq. Res. Inst. 38 (1960) 177], Singh et al. [Acta Geophys. Pol. XXVI (1978) 209], Kaushik and Chopra [Geophys. Res. Bull. 18 (1980) 111] and Gupta [Geophys. Trans. 33 (1987) 89] have been reduced as particular cases.  相似文献   

5.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

6.
A linear viscoporoelastic model is developed to describe the problem of reflection and transmission of an obliquely incident plane P-wave at the interface between an elastic solid and an unsaturated poroelastic medium, in which the solid matrix is filled with two weakly coupled fluids (liquid and gas). The expressions for the amplitude reflection coefficients and the amplitude transmission coefficients are derived by using the potential method. The present derivation is subsequently applied to study the energy conversions among the incident, reflected, and transmitted wave modes. It is found that the reflection and transmission coefficients in the forms of amplitude ratios and energy ratios are functions of the incident angle, the liquid saturation, the frequency of the incident wave, and the elastic constants of the upper and lower media. Numerical results are presented graphically. The effects of the incident angle, the frequency, and the liquid saturation on the amplitude and the energy reflection and transmission coefficients are discussed. It is verified that in the transmission process, there is no energy dissipation at the interface.  相似文献   

7.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation.  相似文献   

8.
基于Biot理论和双重孔隙介质理论研究了弹性波在双重孔隙介质与流体饱和单一孔隙介质 界面的反射和透射问题,在界面上假定裂缝孔隙流体相对于固体骨架的位移为零,推导了反 射系数和透射系数的计算公式,数值讨论了反射系数和透射系数随入射角和频率的变化关 系. 同时,讨论了双重孔隙介质中3种压缩波(P-1, P-2和P-3波)和一种剪切波(S波) 的频散和衰减特性.  相似文献   

9.
The present study is concerned with the reflection and transmission of plane waves at an interface between homogenous invisicid liquid half space and a micropolar liquid-saturated porous solid half space. The reflection and transmission coefficients of various reflected and transmitted waves with the angle of incident have been obtained. Numerical calculation has been performed for amplitude ratios of various reflected and transmitted waves. Micropolarity and porosity effects on the reflection and transmission coefficients have been depicted graphically. Some particular cases have been deduced from the present formulation.  相似文献   

10.
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.  相似文献   

11.
The specific feature of the interface, which maintains sliding contact between elastic media, is that it can be impervious to the wave field existing in one of the adjoined materials. As a result, reflection–transmission of plane acoustic waves at the sliding-contact interface may enjoy the cutting-off effect, which implies that neither bulk, nor inhomogeneous modes are being transmitted at particular angles of incidence. The necessary and sufficient criteria for this phenomenon are obtained for a binary structure, constituted by two elastic half-spaces in sliding contact, and for a sandwich structure with sliding-contact interfaces between the enclosed layer and the substrates. In the generic case of unrestricted anisotropy (triclinic materials), the criterion for cutting-off in a binary structure involves acoustic parameters of solely that of the half-spaces, which contains the incident mode, and proves to be independent of an adjacent medium. The frequency-dispersive criterion for the absence of transmission through a triclinic layer in the sliding-contact sandwich structure is independent of substrates. By appeal to the Stroh formalism, the cutting-off conditions in a binary and a sandwich structure are further elaborated under the assumption that one of the half-spaces, or a layer, is orthorhombic, and its two symmetry planes are parallel, respectively, to the plane of incidence and to the sliding-contact interface with arbitrary adjacent media. It is shown that the transmission cut-off in a binary structure is necessarily accompanied by the absence of mode conversion at reflection, but the reverse is not true. The angles of incidence which give rise to these effects are determined in terms of elastic coefficients. Transmission cut-off through an orthorhombic layer comes about at an arbitrary angle of incidence, related to guided-modes range in the layer, for the corresponding aperiodic infinite set of the frequency values. Relations for the coefficients of reflection and transmission at the sliding-contact interface between two orthorhombic half-spaces are obtained in concise form, expressed solely via normal components of the partial Stroh-normalized traction amplitudes. Provided that the adjoined orthorhombic half-spaces in sliding contact are identical, the same value of wave-vector tangential projection, which stipulates transmission cut-off at the incidence of, say, the fast mode, entails total transmission at the incidence of the slow mode.  相似文献   

12.
The reflection and refraction of a longitudinal wave at an interface between a perfectly conducting nonviscous liquid half-space and a perfectly conducting microstretch elastic solid half-space are studied. The appropriate solutions to the governing equations are obtained in both the half-spaces satisfying the required boundary conditions at the interface to obtain a system of five non-homogeneous equations in the amplitude ratios of various reflected and transmitted waves. The system is solved by a Fortran program of the Gauss elimination method for a particular example of an interface between water and aluminum-epoxy composite. Numerical values of the amplitude ratios are computed for a certain range of the incidence angle both in the presence and absence of an impressed transverse magnetic field. The effects of the presence of the transverse magnetic field on the amplitude ratios of various reflected and transmitted waves are shown graphically.  相似文献   

13.
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.  相似文献   

14.
S. S. Singh 《Meccanica》2013,48(3):617-630
The problem of reflection and refraction of elastic waves for an incident transverse wave at a plane interface between two dissimilar half-spaces of thermo-elastic materials with voids has been investigated. Using the theory developed by Iesan (Acta Mech 60:67–89, 1986), the formulae corresponding to the amplitude and energy ratios of reflected and refracted elastic waves have been obtained. The results similar to Singh and Tomar (Mech Materials 39:932–940, 2007) are recovered from the present analysis. The amplitude and energy ratios are computed numerically for a particular model.  相似文献   

15.
The problem of reflection and refraction of antiplane shear (or magneto-elastic) waves at the interface between two ferromagnetic half-spaces with slipping contact (vacuum gap) is studied for waves propagating normal to the direction of the applied external magnetic field which is assumed to be parallel to the interface. We show the existence of new waves that are localized near the interface between the two ferromagnetic media and accompany the reflected and the transmitted waves. We call the new waves as accompanying surface magneto-elastic (ASME) waves; their amplitudes depend upon values of magnetoelastic parameters of the two media and the intensity of the applied magnetic field. We derive closed-form expressions for magnitudes (coefficients) of the reflected, the refracted (transmitted) and the ASME waves. We show that for a range of values of the applied magnetic field the coefficient of the reflected wave increases and that of the transmitted wave decreases with an increase in the magnitude of the applied magnetic field; these coefficients eventually approach 1 and 0, respectively. That is, the applied external magnetic field can totally eliminate the transmitted wave, and can control energies of the reflected, the refracted and the ASME waves.  相似文献   

16.
The reflection and transmission characteristics of an incident plane P1 wave from the interface of a fluid-saturated single porous solid and a fluid-saturated double porosity solid are investigated. The fluid-saturated porous solid is modeled with the classic Biot’s theory and the double porosity medium is described by an extended Biot’s theory. In a double-porosity model with dual-permeability there exist three compressional waves and a shear wave. The effects of the incident angle and frequency on amplitude ratios of the reflected and transmitted waves to the incident wave are discussed. Two boundary conditions are discussed in detail: (a) Open-pore boundary and (b) Sealed-pore boundary. Numerical results reveal that the characteristics of the reflection and transmission coefficients to the incident angle and the frequency are quite different for the two cases of boundary conditions. Properties of the bulk waves existing in the fluid-saturated porous solid and the double porosity medium are also studied.  相似文献   

17.
The propagation, reflection, and transmission of SH waves in slightly compressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer overlying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suitable boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.  相似文献   

18.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

19.
Piotr Borejko 《Wave Motion》1996,24(4):371-393
Problems for transient line and point load sources in a multilayered elastic medium may be treated by the method of generalized ray. In this method an integral representation of the Laplace-transformed multiply reflected and/or transmitted cylindrical/spherical wave, known as a ray integral, is constructed by linear superposition of the Laplace-transformed plane waves. The inverse Laplace transform of the ray integral can be found in closed form by applying the Cagniard method. For problems in the Cartesian coordinates for line load sources emitting cylindrical waves consistent with either the plane strain conditions or the antiplane strain conditions and for problems in the cylindrical coordinates for axisymmetric and asymmetric point load sources emanating spherical waves, it is well known that: (1) the system of incident, reflected, and transmitted cylindrical/spherical waves at an interface separating two dissimilar media can be divided into two independent of each other, if both present, parts: the coupled P and SV waves, and the SH waves, (2) the reflected and transmitted ray integrals representing the Laplace-transformed reflected and transmitted cylindrical/spherical waves can be constructed by linear superposition of the Laplace-transformed plane P and SV waves, or the plane SH waves, and (3) the potential reflection and transmission coefficients for the plane P, SV, and S H waves are basic to such a superposition. In the present paper we treat the asymmetric three-dimensional problem in the Cartesian coordinates for an arbitrary oriented point force radiating the spherical P and S waves. For this problem all four functions representing the displacement potentials are coupled in the boundary conditions at the interface, the total wave motion at the interface is composed of the coupled spherical P and S waves, and the Laplace-transformed reflected and transmitted spherical waves are therefore constructed by linear superposition of the three-dimensional coupled plane P and S waves. Since such a superposition requires the knowledge of the potential reflection and transmission coefficients for the three-dimensional coupled plane P and S waves, the purpose of the present paper is to derive systematically these coefficient formulas.  相似文献   

20.
This paper studies the reflection and transmission of two dimensional quasi P wave incident at an imperfect interface between two dissimilar Functionally Graded Piezoelectric Materials (FGPM) half-spaces. The imperfect bonding behavior between the two considered half-spaces is described by the interfacial imperfections. The imperfection is characterized by the normal stiffness and tangential stiffness using the linear spring model. These interface parameters (i.e normal stiffness and tangential stiffness) are dependent on the elastic properties of interphase. Secular equations have been derived analytically for both the half-spaces. Different cases of imperfect interfaces namely perfect interface, slip interface, weak bonding interface and unbounded interface have been assumed and discussed. Influence of material gradients on the reflection and transmission coefficients (RTC’s) have been inflicted graphically for all the four considered interface conditions. Further, a comparative study of the RTC’s with respect to the incident angle has been carried out for the different cases of imperfections. The obtained results may be useful for measuring imperfection at the interface and designing of SAW devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号