首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was aimed at investigating traction performance of a cage wheel for use in swampy peat soils in Indonesia. The tests were conducted in a soil bin filled with peat soil taken from the swampy areas. A set up was developed to measure tractive performance of a single cage wheel. Deep sinkage and high wheel slip were identified as the major problems of using the existing cage wheel design in swampy peat soils. The results revealed that increasing the lug angle from 15 to 35° and the length of lug improved the tractive performance of the cage wheel significantly, while increasing the number of lugs from 14 to 18 and width of lug did not improve the tractive performance significantly. A cage wheel with lug size 325×80 mm, 35° lug angle, 14 lugs (26° lug spacing), with 2 circumferential flat rings installed on the inner side of the lugs, out performed the other settings for use with power tillers in swampy peat soils.  相似文献   

2.
In order to clarify characteristics of a new mechanism called a movable lug, a model of a single movable lug equipped with an L-shaped force transducer has been developed. The soil reaction forces (normal and tangential) on a flat single movable lug, a curved single movable lug and a fixed lug were measured on wet sandy loam soil in the laboratory soil bin test. These measured forces then were converted to lug pull and lift forces. The pull and lift forces obtained by the flat movable lug with 45° lug inclination angle and the curved movable lug were higher than those of the fixed lug. It was observed that the lift force of the fixed lug achieved its peak and dropped earlier than those of the movable lugs. However, the peaks of pull and lift forces of the flat and curved movable lugs were almost the same. The flat movable lug with 45° lug inclination angle generated a slightly higher peak of pull force than those with 30° and 60° lug inclination angles. However, the higher lug inclination angle produced, the lower peak of lift force. It was observed that the pull and lift forces increased as the sinkage increased. In contrast to the flat movable lug with 45° lug inclination angle, the curved movable lug produced greater lift force especially at high sinkage. The increase in lug slip from 5% to 25 and 50% caused an increase in the peaks of pull and lift forces. The soil moisture content affected the lug forces significantly.  相似文献   

3.
The effects of low-to-medium slip, lug spacing and moisture content on lug forces in clay soil were investigated in a laboratory soil bin with the help of two model lugs. Perpendicular and radial soil reactions on the lug were measured and they were converted to lug pull and lift forces. The lug slip was varied from 5 to 10, 15, 20 and 25%. The measurements were conducted in clay soils with 6.3, 27.4 and 51% soil moisture contents. The lug spacing was varied from 20° to 30° and 40°. The perpendicular, pull and lift forces increased after lug entry into the soil and, after attaining a certain peak value, they decreased and reached a zero value at lug exit. The increase in lug slip from 5 to 25% caused an increase in lug forces on both lugs. The increase in the soil moisture content from 6.3 to 27.6% caused increase in lug forces on both lugs, but further increase in moisture content to 51% decreased the lug forces. Lug spacing showed a significant effect on lug forces produced by the succeeding lug. The increase in lug slip increased the lug forces at any given lug spacing and moisture content.  相似文献   

4.
A movable lug wheel was tested in a soil bin test apparatus to determine its traction performance and to measure the soil reaction forces on its lugs. Similar tests were also conducted using a fixed lug wheel. The effects of the lug motion pattern, lug spacing and horizontal load on pull and lift forces were studied. From the experiments it is confirmed that the movable action of the lug plate could generate superior pull and lift forces in comparison with the fixed lug wheel. Among the test wheels, lug motion pattern-2 generated the highest pull and lift forces. Within the range of the test conditions, there was no significant difference in pull and lift forces of the lug plate between the test lug wheels with 12 lugs and 15 lugs at the same level of horizontal and vertical loads. The increase of horizontal load up to 200 N generally increased the pull force and generated smaller rolling resistance before the lug left the soil, but did not increase the lift force significantly. The patterns of pull force, lift force and drawbar pull generated under a constant slip were slightly different from those under a constant horizontal load. Finally, the results were also elucidated by their actual lug trajectories in soil.  相似文献   

5.
The measurement of soil reaction forces on a lug of a movable lug cage wheel was carried out in a soil bin. To elucidate the experimental results, a theoretical analysis of soil reaction forces on the lug of the movable lug cage wheel was made by using an analysis of the lug trajectory and a modified theory in soil–vehicle mechanics. The existing theory was modified and adjusted by considering the actual lug trajectory and the soil trench made by the preceding lug. The results showed that the theoretical analysis gave a good representation of the reaction forces measured experimentally. The higher pull and lift forces of the movable lug cage wheel compared with those of the fixed lug wheel was supported by the theoretical analysis. Although the theoretical representation of soil reaction forces should be improved by further works, it is sufficiently accurate to estimate the performance of the movable lug cage wheels by the proposed theory.  相似文献   

6.
A dimensional analysis was carried out to study the effect of individual wheel parameters, namely the lug angle, lug height, rim width and lug spacing on the traction performance of rigid wheels in saturated soils. The performance of the test wheels was evaluated on the basis of drawbar pull, slip and torque data obtained at different normal loads ranging between 50 and 100 kg (790–980 N). The data were utilized to compute the performance values such as tractive efficiency and overall performance index. Through the regression analysis, the optimum values of lug angle, rim width and lug spacing were found to be 20°, 200 mm and 110 mm respectively for a wheel of 685 mm dia. However, a definite conclusion regarding the optimum value of lug height could not be drawn, though the analysis for higher loads indicated this value as of 38 mm. The wheel parameter most influencing the traction performance of the wheel was found to be the rim width.  相似文献   

7.
Recently various experiments were conducted at the Asian Institute of Technology, Bangkok, to study the effect of enamel coating on the performance of some agricultural equipment. In order to reduce soil adhesion on cage wheel lugs, nine different coating materials were tried and enamel coating was found to be the best among these materials. It reduced soil adhesion on cage wheel lugs considerably to avoid cage wheel blocking. To investigate effect of coating on lug forces detailed lab studies were undertaken to measure the lug forces. The effects of lug slip, soil moisture content and sinkage were investigated. It was observed that enamel coating did not affect the lug forces. The pull and lift forces generated by the enamel coated and uncoated lugs were almost the same. When enamel coated bolt-on plates were mounted on the power tiller cage wheel lugs and trials were conducted in actual field conditions, it was observed that in actual field conditions enamel coated bolt-on plates on cage wheel lugs improved the performance of a power tiller. Studies about coating effects on the drag force required to pull floats on soil surface were also conducted. It was observed that enamel coating on floats reduced the drag force significantly. It also greatly improved the scouring of a mouldboard plough used in a wet, sticky clay soil.  相似文献   

8.
A movable lug wheel using a rollers-sliding groove mechanism was designed, constructed and tested. Two types of lug moving patterns of the movable lug wheel were proposed and evaluated. Tests were conducted in a soil bin test apparatus to determine the traction performance of the wheel as affected by lug moving pattern, lug spacing, horizontal load and vertical load. Similar tests were also conducted using a fixed lug wheel. Generally, under the same level of vertical load, the fixed lug wheel sank more than the movable lug wheels did. However in general, under various horizontal loads, there was no significant difference of slip between the movable lug wheel and the fixed lug wheel. Among the test lug wheels, the movable lug wheel with lug moving pattern-2 required the smallest driving torque and developed the highest traction efficiency.  相似文献   

9.
The purpose of this study is to analyze the performance of a lugged wheel for a lunar micro rover on sloped terrain by a 2D discrete element method (DEM), which was initially developed for horizontal terrain. To confirm the applicability of DEM for sloped terrain locomotion, the relationships of slope angle with slip, wheel sinkage and wheel torque obtained by DEM, were compared with experimental results measured using a slope test bed consisting of a soil bin filled with lunar regolith simulant. Among the lug parameters investigated, a lugged wheel with rim diameter of 250 mm, width of 100 mm, lug height of 10 mm, lug thickness of 5 mm, and total lug number of 18 was found, on average, to perform excellently in terms of metrics, such as slope angle for 20% slip, power number for self-propelled point, power number for 15-degree slope and power number for 20% slip. The estimation of wheel performance over sloped lunar terrain showed an increase in wheel slip, and the possibility exists that the selected lugged wheel will not be able to move up a slope steeper than 20°.  相似文献   

10.
A new data acquisition system was introduced that could be used to monitor the real time wheel forces to solve the limitations of obtaining precise performance characteristics of actual cage wheels. Contrary to previous methods, in which the cage wheel forces were obtained by summing up the individual lug forces. The new method enables measurement of the components of lug force in three orthogonal directions simultaneously. A single unit dynamometer system, with two extended octagonal rings was designed and fabricated using a solid mild steel block, was able to measure force up to 5 kN in each direction. It was used in a soil-bin test rig to determine the characteristics of the forces produced by a cage wheel with opposing circumferential lugs. The characteristics of the pull and lift forces agreed with measured drawbar pull and calculated wheel forces respectively. The force signals fluctuated periodically with rotation angle and the corresponding period approximately equal to the interval of angular lug spacing. The side force fluctuated between positive and negative values and the average was closer to zero due to the balancing effect of opposing lugs. The new system showed better output compared to the previous attempts, confirming its applicability for accurate measurement of real time wheel forces.  相似文献   

11.
Experiments in wet clay soil with cage wheel lug showed that the failure pattern in front of a lug was totally different from that assumed in passive soil pressure theory. Based on the failure pattern, the area of deformation zone and surcharge buildup in front of the lug, it was observed that the existing passive soil pressure theory could not be used to describe the soil movement caused by the action of the cage wheel lug. While working with a tine, four types of soil failure patterns were observed. It was found that these types of soil failures in front of a rigid tine were a strong function of soil moisture content. Passive pressure theory does not accurately predict the forces measured.  相似文献   

12.
This paper presents the results of studies on the effect of sinkage and slip of a single cage wheel lug on the deformation of wet clay soil. It was observed that the deformation pattern was strongly influenced by lug sinkage and slip. Soil wedge formation on the lug was also found to be a function of sinkage and slip. Four different deformation patterns were identified during this investigation. It seems unlikely that these can be predicted without a more exact knowledge of stress-strain relationships in soils.  相似文献   

13.
The steering forces at low speed and zero camber angle were measured on undriven, angled wheels using tyres with no tread. The forces were measured in a soil bin using a moist loam soil at different levels of compaction. It was found that the coefficient of side force relative to the wheel was related to slip angle by an exponential relationship. Coefficient of rolling resistance relative to the wheel was a linear function of slip angle in the region zero to 20° but was an irregular function of slip angle at higher angles. The effects of tyre size, load, inflation pressure and soil condition were modelled well using different versions of the tyre mobility number. The most successful version of mobility number was one which incorporated both soil cohesion and internal friction angle. The coefficients of the exponential and linear relationships mentioned above were predicted with varying degrees of success using mobility number.  相似文献   

14.
In order to understand clearly the characteristics of the soil reaction forces on a single movable lug, the resultant of measured soil reaction forces was determined and presented along with its position on the lug plate. The resultant of soil reaction forces acting on the movable lug increased gradually and reached the maximum value when the lug was on about its lowest position in the soil, then it decreased without offering any downward resistance to the lug till the lug left the soil. The maximum resultant force of the movable lug was higher than that of a fixed lug. The point of action of the resultant force on the movable lug shifted in a similar way in all test cases, that is, it moves to the center of the lug from the outer tip until it reaches the position where it becomes the maximum, then it moves to the outer tip till the lug leaves the soil. The inclination angle of the resultant force increased with the decrease of lug inclination angle. The bigger lug sinkage of the movable lug produced bigger soil reaction forces and shifted the point of action of the resultant force from the tip part to the central part of the lug. However, there was no significant effect of the lug sinkage on the direction of the resultant force. The increase in lug slippage from 25% to 50% brought bigger soil reaction forces on the movable lug, but did not influence the direction and point of action of the resultant force.  相似文献   

15.
Many experimental studies of open lugged wheel-soil interaction have been conducted, mainly based on the condition of constant slip and sinkage. As a result the reaction force to lugs seemed to be equal to the soil cutting resistance to a metal surface. However, analyses based on such methods do not appear to represent the actual behaviour of lugged wheel-soil interaction, especially when the lugs are spaced widely. The actual motion the wheel axle. In this study, an experimental device for a model lugged wheel was constructed to investigate the characteristics of the interaction between a lugged wheel and soil. Experiments were conducted under several test conditions of soil including paddy soil with a hard pan. The result of both theoretical and experimental data indicated that slip and sinkage of a lugged wheel showed a fluctuation with rotation angle of which the period is equal to the angular lug spacing. In each test soil condition used, the motion of the lugged wheel and the reaction forces acting on each lug from the soil for a free sinking wheel were different from that of the condition of constant slip and sinkage. It was found that the results obtained from this study could clarify the actual behaviour of lugged wheel-soil interaction.  相似文献   

16.
An indoor traction measurement system for agricultural tires   总被引:1,自引:0,他引:1  
To reliably study soil–wheel interactions, an indoor traction measurement system that allows creation of controlled soil conditions was developed. This system consisted of: (i) single wheel tester (SWT); (ii) mixing-and-compaction device (MCD) for soil preparation; (iii) soil bin; (iv) traction load device (TLD). The tire driving torque, drawbar pull, tire sinkage, position of tire lug, travel distance of the SWT and tire revolution angle were measured. It was observed that these measurements were highly reproducible under all experimental conditions. Also relationships of slip vs. sinkage and drawbar pull vs. slip showed high correlation. The tire driving torque was found to be directly influenced by the tire lug spacing. The effect of tire lug was also discussed in terms of tire slip.  相似文献   

17.
Lugs (i.e., grousers) are routinely attached to the surfaces of wheels/tracks of mobile robots to enhance their ability to traverse loose sandy terrain. Much previous work has focused on how lug shape, e.g., height, affects performance; however, the goal of this study is to experimentally confirm the effects of lug motion on lug–soil forces. We measured normal and tangential forces acting on a single lug as functions of inclination angle, moving direction angle, sinkage length, horizontal displacement, and traveling speed. The experimental results were mathematically fitted by using least square method to facilitate quantitative analyses on effects of changes in these motion parameters. Moreover, we compared the measured tangential forces to values calculated from a conventional tangential force model to evaluate the effects of the lug-tip surface, which is generally ignored in existing terramechanics models. The conclusions from this study would be useful for estimating the traveling performance of locomotive mechanisms equipped with lugs, modeling interaction mechanics between lugged wheels and soil, etc.  相似文献   

18.
Experiments were conducted with a single powered disk in a laboratory soil bin containing Bangkok clay soil with an average moisture content of 18% (db) and 1100 kPa cone index. The disk was 510 cm in diameter and 560 mm in radius of concavity. During the tests the disk angle was varied from 20° to 35°, ground speed from 1 to 3 km/h and rotational speed from 60 to 140 rpm. The working depth was kept constant at 12 cm. The vertical, horizontal and lateral reactions of the soil were measured by force transducers. The forward and rotational speeds were recorded. It was observed that disk angle, rotational speed and ground speed had significant effects on soil reactive forces and power requirement. With a small disk angle, low ground speed, and high rotational speed, the soil longitudinal reactive force was a pushing force and became a resistive one at larger disk angles and ground speeds. The soil transverse reactive force increased with an increase of rotational and ground speed but decreased with the increase of disk angle, whereas the vertical relative force increased only with the increase of ground speed but decreased with the increase of rotational speed and disk angle. It was found that the powered disk required the least power at a disk angle of 30° and rotational speed between 80 and 100 rpm. Increase in ground speed from 1 to 3 km/h increased the total power requirement by 31.8%. Upon driving the disk forward, the draft reduced considerably compared to that of the free-rolling disk. By driving the disk in the reverse direction, the draft reduced slightly. At a disk angle of 30°, rotational speed of 100 rpm, and ground speed of 3 km/h, the total power requirement of the forward-driven disk was 65% higher than that of the free-rolling disk. The predicted engine power of the forward-driven disk, however, was only 21% higher than that of the free-rolling one owing to the more efficient power transmission through the PTO, as opposed to the drawbar. The effects of reverse driving and free rolling of the disk were also studied.  相似文献   

19.
Experiments were conducted in a typical Bangkok clay soil with a PTO driven disk tiller to collect the draft force and torque variation data. Tests were conducted at different forward speeds of 0.29, 0.59, 0.86, 1.08 and 1.37 m/s and at 28° and 33° disk gang angle settings. Average soil moisture content was 26% and average cone index of the test soil was 1870 kPa during all the tests. The draft force was measured by a three point linkage dynamometer. The PTO torque was measured by a slip ring type torque transducer. Tests were also conducted in the unpowered mode. Fast Fourier transform (FFT) and power spectral density (PSD) analysis techniques were used to analyse the draft force and torque variations in a time domain. The results indicated that the dominant frequencies of the draft force variations were within the range of 2.5–5.5 cycles/m of forward travel. The wave length was longer at a higher disk gang angle setting. The dominant frequency component of the torque variations varied from 3.3 to 4.3 cycles/revolution of the disk. In the unpowered mode the dominant frequencies of the draft signals had less magnitude than those of the powered mode for the same operating conditions at both disk gang angle settings of the powered disk.  相似文献   

20.
The steering forces on an undriven, angled wheel mounting a 6-16 8PR tire were measured on a wheel test carriage at zero camber angle and at 1.5 km/h forward speed in a soil bin with sandy clay loam soil. The lateral force developed was found to be a function of slip angle, normal load, and inflation pressure for a particular soil condition. An exponential relationship could estimate the coefficient of lateral force of the 6-16 tire. The coefficients of this equation were found to be linearly related to inflation pressure. Rolling resistance of the wheel tested was found to be a function of slip angle, normal load, and inflation pressure for the soil condition tested. A linear relationship existed between the rolling resistance and slip angle, where the coefficients were found to be a function of inflation pressure and normal load. The generalized equations developed in the present study for estimating coefficients of lateral force and rolling resistance by taking both the tire and operating parameters into account, were found to be reasonably good by looking at the high coefficient of determination between experimental and estimated values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号