首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The turbulent pipe flow of a highly dilute aqueous cationic surfactant solution is investigated by means of a pulsed ultrasound Doppler method with special emphasis on the wall boundary layer. The velocity profiles are recorded for several Reynolds numbers at varying ages of the solution. The wall shear stress velocities u τ used for the normalization of the velocity profiles are determined by fitting the measured profiles to the universal linear velocity profile in the viscous sublayer. The theoretical pressure loss is then calculated from the numerical values of u τ and compared to the experimental values. Two different scaling methods are discussed for the velocity fluctuations concerning the correlation of the root-mean square values with the effect and the amount of drag reduction. It is shown that outer scaling with the mean velocity is appropriate for the detection of drag reduction in surfactant solutions, rather than inner scaling with the wall shear stress velocity, which is common practice in investigations of 'usual' turbulent flows.  相似文献   

2.
Fully developed turbulent pipe flow of an aqueous solution of a rigid “rod-like” polymer, scleroglucan, at concentrations of 0.005% (w/w) and 0.01% (w/w) has been investigated experimentally. Fanning friction factors were determined from pressure-drop measurements for the Newtonian solvent (water) and the polymer solutions and so levels of drag reduction for the latter. Mean axial velocity u and complete Reynolds normal stress data, i.e. u′, v′ and w′, were measured by means of a laser Doppler anemometer at three different Reynolds numbers for each fluid. The measurements indicate that the effectiveness of scleroglucan as a drag-reducing agent is only mildly dependent on Reynolds number. The turbulence structure essentially resembles that of flexible polymer solutions which also lead to low levels of drag reduction.  相似文献   

3.
On pipe diameter effects in surfactant drag-reducing pipe flows   总被引:3,自引:0,他引:3  
Remarkable power saving in a fluid transport system is possible if the surfactant drag reduction technology is used. Application of surfactant drag reduction to district heating and cooling systems has been investigated in the past. The establishment of the scale-up law in drag-reducing pipe flows is one of the most important problems in this application. Main purpose of this study is aimed to develop a reliable scale-up law in surfactant drag-reducing flows. As the basic data of surfactant solutions, both non-Newtonian viscosity and viscoelasticity were experimentally determined. A turbulent eddy diffusivity model based on the Maxwell model was employed to estimate the drag reduction of surfactant solutions. The predictions by the turbulence model developed in this study with proper rheological characteristics of surfactant solutions has resulted in a reliable estimation of the pipe diameter effect in surfactant drag-reducing flows over the pipe diameter range from 11 to 150mm. Received: 30 June 1997 Accepted: 29 December 1997  相似文献   

4.
The effects of thermal entrance length, polymer degradation and solvent chemistry were found to be critically important in the determination of the drag and heat transfer behavior of viscoelastic fluids in turbulent pipe flow. The minimum heat transfer asymptotic values in the thermally developing and in the fully developed regions were experimentally determined for relatively high concentration solutions of heat transfer resulting in the following correlations: $$\begin{gathered} j_H = 0.13\left( {\frac{x}{d}} \right)^{ - 0.24} \operatorname{Re} _a^{ - 0.45} thermally developing region \hfill \\ x/d< 450 \hfill \\ j_H = 0.03 \operatorname{Re} _a^{ - 0.45} thermally developed region \hfill \\ x/d< 450 \hfill \\ \end{gathered} $$ For dilute polymer solutions the heat transfer is a function ofx/d, the Reynolds number and the polymer concentration. The Reynolds analogy between momentum and heat transfer which has been widely used in the literature for Newtonian fluids is found not to apply in the case of drag-reducing viscoelastic fluids.  相似文献   

5.
为揭示胶束水溶液突扩流的减阻特性,实验研究了质量分数为1×10-4, 2 ×10-4的十六烷基三甲基溴化铵水溶液通过管径比为1:1.52的突扩的流动阻力行为. 实验结果表明,在直管段最大减阻率都可达到70%的两给定质量分数的胶束水溶液,其突扩局部阻力系数,在较低雷诺数区域,较牛顿流体仅有10%~20%程度的降低,呈现局部低减阻特性;在较高雷诺数区域远大于牛顿流体,尤其当突扩进口流快失去减阻能力时,甚至接近牛顿流体的1.5倍,呈现明显的局部增阻行为. 胶束水溶液减阻流,在突扩下游再次形成充分发展流所需的下游长度,远大于牛顿流体的7.8倍下游管径(45倍突扩台阶高度),流入突扩前完全失去减阻能力的质量分数为2×10-4的胶束水溶液流,所需的突扩下游长度达到最大,约合158倍下游管径(920倍突扩台阶高度). 通过胶束水溶液流变特性的实验分析认为,减阻水溶液突扩流的阻力行为与它的胶束网联结构的形成及松弛的时间特性密切相关.   相似文献   

6.
In the present work we describe how turbulent skin-friction drag reduction obtained through near-wall turbulence manipulation modifies the spectral content of turbulent fluctuations and Reynolds shear stress with focus on the largest scales. Direct Numerical Simulations (DNS) of turbulent channels up to Re τ = 1000 are performed in which drag reduction is achieved either via artificially removing wall-normal turbulent fluctuations in the vicinity of the wall or via streamwise-travelling waves of spanwise wall velocity. This near-wall turbulence manipulation is shown to modify turbulent spectra in a broad range of scales throughout the whole channel. Above the buffer layer, the observed changes can be predicted, exploiting the vertical shift of the logarithmic portion of the mean streamwise velocity profile, which is a classic performance measure for wall roughness or drag-reducing riblets. A simple model is developed for predicting the large-scale contribution to turbulent fluctuation and Reynolds shear stress spectra in drag-reduced turbulent channels in which a flow control acts at the wall. Any drag-reducing control that successfully interacts with large scales should deviate from the predictions of the present model, making it a useful benchmark for assessing the capability of a control to affect large scales directly.  相似文献   

7.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   

8.
添加剂湍流减阻流动与换热研究综述   总被引:2,自引:1,他引:1  
焦利芳  李凤臣 《力学进展》2008,38(3):339-357
添加剂湍流减阻是指在液体的管道湍流中添加少量的高分子聚合物或某种表面活性剂从而使湍流阻力大大降低的现象.从其被发现至今,经过近半个世纪的研究(实验研究、理论分析、数值模拟和实际系统的应用研究),尽管对这一现象及其实际应用价值已有了较为深入的认识,但仍有许多方面尚有欠缺,例如对湍流减阻的机理仍然在探索中.本文归纳评述了高分子聚合物或表面活性剂添加剂湍流减阻流动与换热现象的研究现状,从湍流减阻剂的特性、减阻剂的湍流减阻机理、湍流减阻发生时的换热机理、减阻流动速度场分布和换热控制等几个方面综述了添加剂湍流减阻流动与换热特性,并综述了湍流减阻剂在实际工业系统中的应用情况,在对添加剂湍流减阻机理、有湍流减阻发生时的对流换热机理等的理解方面进行了新的总结.   相似文献   

9.
The first part of the work presents an overview of the physical chemistry of surfactants which in aqueous solutions reduce the frictional loss in turbulent pipe flow. It is shown that these surfactants form rodlike micelles above a characteristic concentraionc t. The experimental evidence for rodlike micelles are reviewed and the prerequisites that the surfactant system must fulfill in order to form rodlike micelles are given. It is demonstrated by electrical conductivity measurements that the critical concentration for the formation of spherical micelles shows little temperature dependence, whereasc t increases very rapidly with temperature. The length of the rodlike micelles, as determined by electric birefringence, decreases with rising temperature and increases with rising surfactant concentration. The dynamic processes in these micellar systems at rest and the influence of additives such as electrolytes and short chain alcohols are discussed.In the second part, the rheological behaviour of these surfactant solutions under laminar and turbulent flow conditions are investigated. Viscosity measurements in laminar pipe and Couette flow show the build-up of a shear induced viscoelastic state, SIS, from normal Newtonian fluid flow. A complete alignment of the rodlike micelles in the flow direction in the SIS was verified by flow birefringence. In turbulent pipe flow, drag reduction occurs in these surfactant systems as soon as rodlike micelles are present in the solution. The extent and type of drag reduction, i.e. the shape of the friction factor versus Reynolds number curve, depends directly on the size, number and surface charge of the rodlike micelles. The friction factor curve of each surfactant investigated changes in the same characteristic way as a function of temperature. For each surfactant, independent of concentration, an upper absolute temperature limit,T L, for drag reduction exists which is caused by the micellar dynamics.T L is influenced by the hydrophobic chain length and the counter-ion of the surfactant system. A first attempt is made to explain the drag reduction of surfactants by combining the results of these rheological measurements with the physico-chemical properties of the micellar systems.  相似文献   

10.
The skin friction factor f in a turbulent wall-bounded flow can be greatly reduced by using polymer solutions. In this paper we discuss experimental results on the effect of the Coriolis force on turbulent drag reduction. To study this, a horizontal smooth-walled pipe with internal diameter 25?mm is placed on a horizontal table rotating about its vertical axis. The rotation is made non-dimensional with friction velocity and pipe diameter, to form the Rotation number Ro. For a range of bulk Rotation number (Ro b ) between 0 and 0.6 for two different Reynolds numbers (Re b = 15 & 30 × 103), the pressure drop is measured, from which the average friction factor f is obtained. Additionally the effect of four different polymer concentrations has been investigated. The single-phase results show that the friction factor increases monotonic but gradual with Rotation. With polymer additives a drag reduction is found that increases with concentration, but which is not affected by the rotation.  相似文献   

11.
The pipe flow drag-reducing properties of mixtures of alkyltrimethylammonium halides with 1-naphthol in aqueous solution have been investigated. The effects of solution concentration, soap-naphthol ratio, soap molecular weight and solution temperature upon drag reduction and swirl decay time are reported. The critical wall shear stresses above which the drag-reducing properties cease correlate well with swirl decay time. At low soap concentrations greater than equimolar proportions of 1-naphthol with the soap are required for maximum drag reduction. The drag-reducing properties of these solutions are greatest at and around the Krafft point of the pure soap. A phenomenon similar to onset for polymer solution drag reduction is reported for these soap solutions.  相似文献   

12.
Isothermal and non-isothermal flow rate-pressure drop data in turbulent flow through smooth pipes have been obtained for non-Newtonian fluids, including aqueous solutions of polymers and aqueous suspensions of titanium dioxide. It has been found that the friction factor, f, is a function of a new form of Reynolds number, ReB, based on the parameters A, x and w of Bowen's correlation, viz.
τwDx=Auw
where τw is the wall shear strees, ?u the mean velocity, D the pipe diameter; A, x and w are experimentally derived parameters which characterise the fluid.  相似文献   

13.
When concentrated polymer solutions are injected into the core-region of a turbulent pipe or channel flow, the injected polymer solution forms a thread which preserves its identity far beyond the injection point. The resulting drag reduction is called heterogeneous drag reduction.This study presents experimental results on the mechanism of this type of drag reduction. The experiments were carried out to find out whether this drag reduction is caused by small amounts of polymer removed from the thread and dissolved in the near-wall region of the flow or by an interaction of the polymer thread with the turbulence. The friction behavior of this type of drag reduction was measured for different concentrations in pipes of different cross-sections, but of identical hydraulic diameter. The parameters of the injection, i.e. injector geometry as well as the ratio of the injection to the bulk velocity, were varied. In one set of experiments the polymer thread was sucked out through an orifice and the friction behavior in the pipe was determined downstream of the orifice. In another experiment, near-wall fluid was led into a bypass in order to measure its drag reducing properties. Furthermore, the influence of a water injection into the near-wall region on the drag reduction was studied.The results provide a strong evidence that heterogeneous drag reduction is in part caused by small amount of dissolved polymer in the near-wall region as well as by an interaction of the polymer thread with the turbulence.Nomenclature a channel height - b channel width - c p concentration of the injected polymer solution - c R effective polymer concentration averaged over the cross-section - d pipe or hydraulic diameter - d i injector diameter - DR drag reduction - f friction factor - l downstream distance from injector - L length of a pipe segment - P polymer type - p differential pressure - Re Reynolds number - U bulk velocity - u * ratio of injection to bulk velocity - y + dimensionless wall distance - v kinematic viscosity - density of the fluid - w wall shear stress  相似文献   

14.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In this paper, The drag reduction characteristics of surfactant solutions have been experimentally studied, as well as, the shear viscosities of turbulent drag-reducing surfactant solution have been measured as a function of concentration, shear rate and temperature by using AG-G2 (TA Instruments, New Castle, USA) rheometer. In comparison the rheological property with the macroscopic behavior of the solutions in turbulent channel flow, a deeper insight into the mechanisms of drag-reducing surfactant solution has been obtained. For no shear induced structure of surfactant solutions they just show features shear thinning, but the drag reduction is very significant phenomenon. Surfactant solution of the shear induced structure is not a surfactant fluid drag reduction of the necessary elements.  相似文献   

16.
Rheological characteristics of trimethylolethane (TME) clathrate–hydrate slurry treated with drag-reducing surfactants were investigated. Friction coefficients and apparent viscosities were measured when the concentration of TME and its hydrate fraction treated with and without drag-reducing surfactants were changed in several steps. From the results, it is found that the surfactant addition causes effective drag reduction in a pipe flow when the hydrate fraction becomes high, while effective drag reduction disappears in the cases of low hydrate fraction. The results of viscosity measurements indicate that the TME molecules disturb the formation of shear-induced structures (SIS) causing drag reduction phenomena. To investigate this interaction between TME and surfactant micelles, the effect of TME concentration on viscosity and relaxation time of solutions was discussed. From this, it was found out that there exists a critical concentration of TME on the formation of SIS and that it becomes larger as shear rate increases. Thus, we conclude that this interaction between TME and micellar structures causes less drag reduction for the cases of low hydrate fraction, while the drag reduction appears in cases of high hydrate fraction because TME concentration in liquid phase becomes small.  相似文献   

17.
Turbulent Couette flow between two circular cylinders has been used for drag reduction experiments using surfactants. In the experiments presented here, only the outer cylinder rotates, the inner cylinder remains at rest and accurate measurements of the torque at the inner cylinder are measured. Water is used as a reference fluid. A drag reducing surfactant called Arquad S-50 (Akzo Nobel Surface Chemistry LLC, Chicago, Ill., USA) (5 mM)+NaSal (12.5 mM) was used as the drag reduction agent. This surfactant can reduce the drag up to 70% (a Reynolds number of about 70,000–150,000) as measured by pressure drop in a pipe flow. Experiments in Couette flow also show drag reduction in the turbulent range. Two arrangements were used, (1) one small trip-wire on the inner cylinder, and (2) four larger trip-wires on the outer cylinder. These trips reduce the critical Reynolds number for transition from laminar to turbulent flow. In case (1), we obtained 18% drag reduction at 5,000<Re<15,000 and in case (2), we obtained an average reduction of about 20% at 2,000<Re<10,000, increasing up to 30% at Re=15,000. The paper also discusses two important problems. First, the shear rate is not constant in the radial gap in circular Couette flow. For non-Newtonian fluids, where the molecular viscosity is a function of the shear rate, this effect must be considered. Second, which viscosity should be used in the Reynolds number? For pipe flow measurements, most authors use the viscosity of the solvent (generally water and Newtonian). For measurements in the Couette flow, we use a different approach, which is described in this paper. We conclude that Couette flow is a useful method for drag reduction investigations. Its advantage is the much smaller geometry in comparison to those of conventional test facilities such as wind tunnels, water, or oil channels or in tubes.  相似文献   

18.
Summary The elastic properties of very dilute solutions of a number of drag-reducing polymers differing either in chemical nature or molecular weight were investigated over a range of values of shear stress using the jet thrust method. Parallel drag reduction measurements were also made with the solutions. The results indicate a general relationship between the value of the first normal stress difference at the wall, (p 11-p 22, and the dragreducing ability.The data tends to confirm the generality of the correlation between the value of theWeissenberg number and the drag reduction reported byMetzner for a single polymer sample.  相似文献   

19.
A new low-Reynolds-number kε turbulence model is developed for flows of viscoelastic fluids described by the finitely extensible nonlinear elastic rheological constitutive equation with Peterlin approximation (FENE-P model). The model is validated against direct numerical simulations in the low and intermediate drag reduction (DR) regimes (DR up to 50%). The results obtained represent an improvement over the low DR model of Pinho et al. (2008) [A low Reynolds number kε turbulence model for FENE-P viscoelastic fluids, Journal of Non-Newtonian Fluid Mechanics, 154, 89–108]. In extending the range of application to higher values of drag reduction, three main improvements were incorporated: a modified eddy viscosity closure, the inclusion of direct viscoelastic contributions into the transport equations for turbulent kinetic energy (k) and its dissipation rate, and a new closure for the cross-correlations between the fluctuating components of the polymer conformation and rate of strain tensors (NLTij). The NLTij appears in the Reynolds-averaged evolution equation for the conformation tensor (RACE), which is required to calculate the average polymer stress, and in the viscoelastic stress work in the transport equation of k. It is shown that the predictions of mean velocity, turbulent kinetic energy, its rate of dissipation by the Newtonian solvent, conformation tensor and polymer and Reynolds shear stresses are improved compared to those obtained from the earlier model.  相似文献   

20.
We have measured by means of four ultrasonic transducers the fall velocity of a sphere at high Reynolds number range in dilute polyacrylamide solutions which have viscoelastic effects. The polymer solutions were 5, 20 and 50ppm in the concentration. Basset-Bousinessq-Oseen equation for the falling sphere was analyzed numerically on Newtonian fluids in order to compare with the fall velocity of a sphere in the polymer solutions, and the experimental data of the fall velocity in tap water is in agreement with the range of no effect of the test tank wall. In polymer solutions, it was shown that the fall velocity is larger than that in Newtonian fluids within the critical Reynolds number range such that the drag reduction occurs and is smaller than that of Newtonian fluids over the range. The experimental data for the drag reduction ratio of polymer solutions is arranged by Weissenberg number calculating the experimental data of the first normal stress differences. It was shown that the maximum drag reduction ratio in the polymer solutions lies in the range of We=3∼10. Received: 15 October 1997 Accepted: 12 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号