首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
被动标量场的统计性质, 在湍流理论以及湍流燃烧、污染物防治等工程领域都有非常重要的意义. 最近十几年, 大量的实验测量、数值模拟和理论分析结果表明, 标量场具有很多自身独特的性质, 甚至有些性质并不依赖于速度场本身. 这就促使人们对传统经典理论进行重新认识、修正或者提出新的理论来取代. 本文对标量场的各向异性、标量和标量耗散率的概率密度函数(PDF)、标量场的空间结构及演化过程、还有标量小尺度混合模型等几个方面进行综述.   相似文献   

2.
在大型重力式密度分层水槽中, 对内孤立波与圆柱型结构的相互作用特性开展了系列实验. 基于两层流体中 内孤立波的KdV,eKdV和MCC理论, 建立了圆柱型结构内孤立波载荷的理论预报模型, 给出了该载荷理论预报模型中3类内孤立波理论的适用性条件.研究表明, 圆柱型结构内孤立波水平载荷包括水平Froude-Krylov力、附加质量力和拖曳力3个部分, 可以由Morison公式计算, 而内孤立波垂向载荷主要为垂向Froude-Krylov力, 可以由内孤立波诱导动压力计算.系列实验结果表明, 附加质量系数可以取为常数1.0, 拖曳力系数与内孤立波诱导速度场的雷诺数之间为指数函数关系, 而且基于理论预报模型的数值结果与系列实验结果吻合.  相似文献   

3.
在改进传统的传递矩阵法中,Riccati 传递矩阵法具有普遍的意义,国内已开始试用,是一种值得推广的方法.本文应用传统的传递矩阵法和改进后的Riccati 传递矩阵法,对16m~3大型挖掘机的1∶5动臂模型,进行了扭转振动和弯曲振动的分析,得到频率在10~3Hz 以下的11阶振动模态.并与实验结果进行了比较.结果说明,传递矩阵法用得恰当,能以较少的计算工作量得到动臂一类结构振动的主要特性.分柝结果已提交科研任务委托单位.  相似文献   

4.
在改进传统的传递矩阵法中,Riccati 传递矩阵法具有普遍的意义,国内已开始试用,是一种值得推广的方法.本文应用传统的传递矩阵法和改进后的Riccati 传递矩阵法,对16m~3大型挖掘机的1∶5动臂模型,进行了扭转振动和弯曲振动的分析,得到频率在10~3Hz 以下的11阶振动模态.并与实验结果进行了比较.结果说明,传递矩阵法用得恰当,能以较少的计算工作量得到动臂一类结构振动的主要特性.分柝结果已提交科研任务委托单位.  相似文献   

5.
高阶矩模型是湍流模式理论研究中的难点和前沿. 自周培源先生首次建立一般湍流的雷诺应力输运方程起, 为了更精确的预测复杂流动, 人们从未间断过对高阶矩模型的研究. 尤其进入新世纪以来, 随着计算机硬件水平的飞跃和高精度数值算法的突破, 湍流模拟方法正由RANS向LES转变. 而无论对于RANS框架、LES框架还是两者混合, 高阶矩模式都是其中先进封闭模式的代表. 基于此, 本文对高阶矩模型的发展情况进行了总结, 重点包括高阶矩模型中各项的建模方式、尺度提供方程的演化历程和数值求解技术的关键需求. 然后, 通过几类典型湍流问题展示了其相对于传统涡黏模型的优势, 并且给出了部分CFD软件对高阶矩模型的集成情况. 最后对高阶矩湍流模型未来面临的挑战和发展的方向进行了展望.   相似文献   

6.
王哲  林皋 《计算力学学报》2004,21(2):231-235
构造了标量形式的无耦合条件下双子系统静动态统一本构模型.推导出第1和第2子系统中加载应变速率临界值ε·c1和ε·c2,当应变速率ε·分别低于和高于某个临界值时,相应子系统中的不可逆行为分别是与时间无关的和与时间相关的.由于当ε·跨越ε·c1和ε·c2时,内变量的求解公式发生变化,所以动态强度随ε·变化的规律发生变化.经与铝的实验结果比较确认,本构模型能够描述材料的多种静动态力学行为.  相似文献   

7.
邱明  张永振  朱均 《摩擦学学报》2005,25(6):545-549
对4种SiC颗粒增强铝基复合材料在5种速度和4种压力条件下进行了销-盘摩擦磨损试验,运用遗传神经网络技术建立了铝基复合材料在高速干滑动过程中的摩擦行为预报模型,并用该模型对铝基复合材料进行预报.结果表明,蓄热能力较大的铝基复合材料在服役条件下具有较高的摩擦系数,与实际情况相一致.用遗传神经网络建立的铝基复合材料摩擦行为预测模型为服役条件下提供了简便、可靠的优选材料方法.  相似文献   

8.
风场模拟中AR模型的若干问题   总被引:1,自引:0,他引:1  
自回归(AR)模型具有计算量小,模拟速度快等优良特性,在风场模拟中得到了广泛应用.本文对AR模型进行了系统的研究,将脉动风场模拟中广泛应用的AR模型归为两大类,对模型中的参数从理论上进行了合理的解释.对两种模型模拟脉动风场时涉及到的Wiener-KJaintchine公武的交换形式,通过分析对其进行了修正,指出算法上可以采用FFT技术来计算互相关矩阵的元素以提高计算效率.提出了AR模型编程中偶然发现的自回归顺序问题,算例表明两种不同方法的风速时程样本及其无偏自相关估计和自功率谱估计均有较大的影响,希望能引起更多同行对该问题的注意.尽管标量过程AR模型简单且易于掌握,但不能考虑时滞问题.相比之下,理论分析和数值实验都证明,向量过程的AR模型在精度总体要高于标量过程的AR模型,但其运算时间也相应增多.  相似文献   

9.
为减少对环境污染而建造全球最大爆炸加工场地,建造之前需要对其进行深入研究,特别是自然通风问题。为此,本文对实际结构的1/6模型进行实验研究,同时采用三维瞬态数值模拟方法,对实际结构和1/6实验模型在自然通风条件下有害气体浓度衰减情况进行详细研究。通过数值模拟可以推导出1/6实验模型与实际结构有害气体衰减时间比例常数;并依据1/6模型实验结果,推测出实际结构有害气体排出时间,为实际结构设计提供理论支持。  相似文献   

10.
为建立岩石工程灾害精准预测预报体系,本文进行了红砂岩试件震源时空演化特征及破裂机制实验研究.采用单轴加载方式,以声发射技术和数字散斑相关方法进行实验数据的采集,基于矩张量反演方法,分析岩石变形局部化带相对位移速率和震源体积参数、裂纹能量的对应关系,探讨岩石破裂机制及前兆特征.研究结果表明:(1)岩石承载力受变形局部化结...  相似文献   

11.
Conditional Moment Closure for Large Eddy Simulations   总被引:1,自引:0,他引:1  
A conditional moment closure (CMC) based combustion model for large-eddy simulations (LES) of turbulent reacting flow is proposed and evaluated. Transport equations for the conditionally filtered species are derived that are consistent with the LES formulation and closures are suggested for the modelling of the conditional velocity, conditional scalar dissipation and the fluctuations around the conditional mean. A conventional β-probability density distribution of the scalar is used together with dynamic modelling for the sub-grid fluxes. The model is validated by comparison of simulations with measurements of a piloted, turbulent methane-air jet diffusion flame.  相似文献   

12.
The mapping closure of Chen et al. [Phys. Rev. Lett., 63, 1989] is a transported probability density function (PDF) method that has proven very efficient for modelling of turbulent mixing in homogeneous turbulence. By utilizing a Gaussian reference field, the solution to the mapping function (in homogeneous turbulence) can be found analytically for a range of initial conditions common for turbulent combustion applications, e.g. for binary or trinary mixing. The purpose of this paper is to investigate the possibility of making this solution a presumed mapping function (PMF) for inhomogeneous flows. The PMF in turn will imply a presumed mixture fraction PDF that can be used for a wide range of models in turbulent combustion, e.g. flamelet models, the conditional moment closure (CMC) or large eddy simulations. The true novelty of the paper, though, is in the derivation of highly efficient, closed algebraic expressions for several existing models of conditional statistics, e.g. for the conditional scalar dissipation/diffusion rate or the conditional mean velocity. The closed form expressions nearly eliminates the overhead computational cost that usually is associated with nonlinear models for conditional statistics. In this respect it is argued that the PMF is particularly well suited for CMC that relies heavily on manipulations of the PDF for consistency. The accuracy of the PMF approach is shown with comparison to DNS of a single scalar mixing layer to be better than for the β-PDF. Not only in the shape of the PDF itself, but also for all conditional statistics models computed from the PDF.  相似文献   

13.
We present a method of direct quadrature conditional moment closure (DQCMC) for the treatment of realistic turbulence-chemistry interaction in computational fluid dynamics (CFD) software. The method which is based on the direct quadrature method of moments (DQMOM) coupled with the conditional moment closure (CMC) equations is in simplified form and easily implementable in existing CMC formulation for CFD. The observed fluctuations of scalar dissipation around the conditional mean values are captured by the treatment of a set of mixing environments, each with its pre-defined weight. Unlike the early versions of the DQCMC method the resulting equations are similar to that of the first-order CMC, and the ??diffusion?? term is strictly positive and no correction factors are used. We present results for two mixing environments where the resulting matrices of the DQCMC can be inverted analytically. We have performed this analysis for a simple hydrogen flame using a multi species chemical scheme containing nine species. The effects of the fluctuations around the conditional means are captured accurately and the predicted results are in very good agreement with observed trends from direct numerical simulations. Furthermore, the differences between the first order CMC and DQCMC are discussed.  相似文献   

14.
We consider the chemical reaction in a turbulent flow for the case that the time scale of turbulence and the time scale of the reaction are comparable. This process is complicated by the fact that the reaction takes place intermittently at those locations where the species are adequately mixed. This is known as spatial segregation. Several turbulence models have been proposed to take the effect of spatial segregation into account. Examples are the probability density function (PDF) and the conditional moment closure (CMC) models. The main advantage of these models is that they are able to parameterize the effects of turbulent mixing on the chemical reaction rate. As a price several new unknown terms appear in these models for which closure hypothesis must be supplied. Examples are the conditional dissipation 〈 χ ∣ φ 〉, the conditional diffusion 〈 κ ∇2 φ ∣ u, φ 〉 and the conditional velocity 〈 u ∣ φ 〉. In the present study we investigate these unknown terms that appear in the PDF and CMC model by means of a direct numerical simulation (DNS) of a fully developed turbulent flow in a channel geometry. We present the results of two simulations in which a scalar is released from a continuous line source. In the first we consider turbulent mixing without chemical reaction and in the second we add a binary reaction. The results of our simulations agree very well with experimental data for the quantities on which information is available. Several closure hypotheses that have been proposed in the literature, are considered and validated with help of our simulation results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The modelling of conditional scalar dissipation in locally self-similar turbulent reacting jets is considered. The streamwise dependence in the transport equation of the conserved scalar pdf is represented by a function solely dependent on centreline mixture fraction. This procedure provides a simple model suitable for non-homogeneous flows and ensures positive values for conditional scalar dissipation. It has been tested in pure hydrogen-air jet diffusion flames using a Conditional Moment Closure method with detailed 12species, 23 reactions chemistry. The calculations show good agreement of the averaged scalar dissipation with reference values and the model proves to be superior to previous models based on homogeneous flows if the distribution of the conditional scalar dissipation in mixture fraction space is compared with experimental results. A dependence of NO predictions on the model of conditional scalar dissipation can be observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The performance of a variety of scale similarity (SS) type models for closure of sub-grid scalar flux in the context of Large Eddy Simulations (LES) of premixed turbulent combustion has been assessed. In addition to the well-known SS models, a more recent development by Anderson and Domaradzki (2012) is included in the analysis and also further model extensions and improvements are discussed. The work is based on a priori analysis of two Direct Numerical Simulation (DNS) databases of freely propagating turbulent premixed flames with a range of different Lewis and turbulent Reynolds numbers. Depending on the balance between the effects of flame normal acceleration due to heat release and the effects of turbulent velocity fluctuations, as well as the filter size, the subgrid-scalar flux exhibits both local gradient and counter-gradient transport which presents a considerable modelling challenge. The assessment is based on a correlation analysis and on the magnitude of the model expressions conditional on the Favre averaged reaction progress variable in comparison to the value obtained from DNS. Despite the fact that most of the models have been developed in the context of momentum transport in non-reactive flows they show either comparable or better performance in comparison to more conventional models used for reactive scalar flux closure. It is found that some models are sensitive to the test filter width and recommendations are provided in this regard. Further it is observed that the use of a Favre test filter substantially increases the correlation strength in direction of mean flame propagation where effects of heat release are most pronounced.  相似文献   

17.
It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale “intermittenc” on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here.  相似文献   

18.
This paper follows the evolution in understanding of the multiple mapping conditioning (MMC) approach for turbulent combustion and reviews different implementations of MMC models. As the MMC name suggests, the original version represents a consistent combination of CMC-type conditional equations (conditional moment closure) and generalised mapping closure. It seems that the strength of the MMC model, and especially that of its stochastic version, lies in a more general (and much more transparent) interpretation. In this new generalised interpretation, we can replace complicated derivations by physical reasoning and the model appears to be a natural extension of modelling approaches developed in recent decades. MMC can be seen as a methodology for enforcing certain known characteristics of turbulence on a conventional mixing model. This is achieved by localising the mixing operation in a reference space. The reference space variables are selected to emulate the properties of a turbulent flow which have a strong effect on reactive quantities. The best and simplest example is an MMC model which has a single reference variable emulating the mixture fraction. In diffusion flames turbulent fluctuations of reacting quantities are strongly correlated with fluctuations of the mixture fraction. By making mixing local in the reference mixture fraction space a CMC-type mixing closure is enforced. In the original interpretation of MMC the reference variables are modelled as Markov processes. Since the reference variables should emulate properties of turbulent flows as realistically as possible the next step, and the basis of generalised MMC, is to remove the Markovian restriction and set reference variables equal to traced Lagrangian quantities within DNS or LES flow fields. Indeed, no Markov value can emulate the mixture fraction better than the mixture fraction itself. (Using a Markov vector process of dimension higher than the number of conditioning variables represents a more economical alternative for producing reference variables in generalised MMC.) The generalised MMC approach effectively incorporates the mixture fraction-based models, the PDF methods and LES/DNS techniques into a single methodology with possibility of blending useful features developed previously for conventional models. The generalised approach to MMC stimulates a more flexible understanding of simulations using sparsely placed Lagrangian particles as tools that may provide accurate joint distributions of reactive scalars at relatively low computational cost. The physical reasoning behind the new interpretation of MMC is supported by example computations for a partially premixed methane/air diffusion flame (Sandia Flame D). The scheme utilises LES for the dynamic field and a sparse-Lagrangian filtered density function method with MMC mixing for the scalar field. Two different particle mixing schemes are tested. Simulations are performed using only 35,000 Lagrangian particles (of these only 10,000 are chemically active) on a single workstation. The relatively low computational cost allows the use of realistic chemical kinetics containing 34 reactive species and 219 reactions. Intended for publication in the special issue of Flow, Turbulence and Combustion arising from the 2nd ECCOMAS Thematic Conference on Computational Combustion held at Delft in mid-2007.  相似文献   

19.
Large-eddy simulations (LES) have been coupled with a conditional moment closure (CMC) method for the computation of a series of turbulent spray flames. An earlier study by Ukai et al. (Proc. Combust. Inst. 34(1),1643–1650, 2013) gave reasonable results for the prediction of temperature and velocity profiles, but some limitations of the method became apparent. These limitations are primarily related to the upper limit in mixture fraction space. In order to enhance the applicability of the LES-CMC model, this paper proposes a two-conditional moment approach to account for the existence of pre-evaporated fuel by introducing two sets of conditional moments based on different mixture fractions. The two-conditional moment approach is first tested for a non-reacting test case. The results indicate that the spray evaporation induces relatively large conditional fluctuations within a CMC cell, and one set of conditional moments might not be sufficient. The upper limit of the mixture fraction space is dynamically selected for the solution of the second set of conditional moments, and the corresponding CMC solution in a CFD cell is estimated by interpolation between the two conditional moments weighted by the amount of vapour emitted within the domain. The cell-filtered value is given by integration of the conditional moment across mixture fraction space using a bounded β-FDF for the distribution of the scalar. As a result, the fuel concentration profiles given by LES and the two-conditional moment approach are shown to agree well. Then, the two-conditional moment approach is applied to four different flame configurations. The comparison of LES cell quantities and conditionally averaged moments indicates that the two sets of conditional moments are necessary for accurate predictions in zones where gas phase mixture fraction is significantly increased by droplet evaporation within the computational domain. The unconditional temperature profiles clearly show that the new approach improves the predictions of mean temperature especially along the centerline. Also, the better predictions of the temperature field improve the accuracy of the predicted mean axial droplet velocities. Overall, good agreement with the experimental results is found for all four cases, and the methodology is shown to be applicable to flames with a relatively wide range of fuel vapour concentrations.  相似文献   

20.
Scalar dissipation is of great importance in the theory and modelling of combustion and other reacting turbulent flows. Measurements of scalar dissipation are found to lack the quality assurance of checks available from the conservation equations. Conditional averages of the scalar dissipation, so important in turbulent reacting flow theory and modelling, have qualitative and quantitative dependences that are very dependent on the details of the flow and mixing conditions. Accordingly, effort needs to focus on viable means of modelling it. Fluctuations of the scalar dissipation about the conditional mean are also important. Research results in this area need to be made more accessible to the combustion scientist. Heat release effects, so important in turbulent premixed combustion, are found to be much less important in non-premixed combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号