首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field.  相似文献   

2.
Convective heat transfer within circular microchannels in a rectangular solid substrate with heat generation due to imposed magnetic field was studied. A detailed parametric study was performed by varying Reynolds number, magnetic field strength, working fluid, and the diameter of the channel. It was found that the heat transfer coefficient decreases downstream along the channel. Nusselt number increased with Reynolds number. The tube diameter, properties of the working fluid, and magnetic field strength affected the temperature distribution and heat transfer rate at the solid-fluid interface.  相似文献   

3.
Nucleate pool boiling heat transfer of ferrofluid on a horizontal plate; has been explored numerically. Extra necessary equations have been used in this model to simulate mass transfer and effect of magnetic field that had not considered in previous researches using mixture model. Also effect of negative and positive gradient of magnetic field on the heat transfer rate and bubble shape has been investigated. Results are in good agreement with experimental data.  相似文献   

4.
This paper deals with the experimental and theoretical investigation of the influence of an electric field on the heat transfer rate during stable film boiling of the electrically insulating fluid FC-72. In particular the case of stable saturated film boiling from a horizontal plate is studied. The experiments show that the heat transfer rate increases ±50 when an electric field of 27.3 kV/cm is applied. A new correlation for the heat transfer rate in the presence of an electric field based on the heat transfer model of Klimenko is derived in this paper. Therefore the behavior of the liquid-vapor interface is studied in more detail. This study shows that the electric field has a two fold effect on the interface. On the one hand the distance between adjacent bubbles decreases and on the other hand the bubbles elongate in the presence of the electric field. The new correlation is in good agreement with the experiments. Received on 20 October 1998  相似文献   

5.
An experimental study was performed to characterize the boiling heat transfer of impinging circular submerged jets on simulated microelectronic chips with a nominal area of 5 mm × 5 mm. The heat transfer modes included natural convection, partially developed nucleate boiling, fully developed nucleate boiling and critical heat flux. The study included the effects of jet parameters and fluid subcooling on the nucleate boiling. The results showed that the nucleate boiling data varied only with fluid subcooling regardless of jet parameters and that both the pool and impingement nucleate boiling curves at the same subcooling condition were well correlated. The high heat flux portions of the boiling curves with jet exit velocities greater than 10 m/s were corrected for the elevated saturation temperature. A new expression was developed with an interpolation method to construct the partially developed nucleate boiling curve.  相似文献   

6.
Flow boiling in metal-foam filled tube was analytically investigated based on a modified microstructure model, an original boiling heat transfer model and fin analysis for metal foams. Microstructure model of metal foams was established, by which fiber diameter and surface area density were precisely predicted. The heat transfer model for flow boiling in metal foams was based on annular pattern, in which two phase fluid was composed by vapor region in the center of the tube and liquid region near the wall. However, it was assumed that nucleate boiling performed only in the liquid region. Fin analysis and heat transfer network for metal foams were integrated to obtain the convective heat transfer coefficient at interface. The analytical solution was verified by its good agreement with experimental data. The parametric study on heat transfer coefficient and boiling mechanism was also carried out.  相似文献   

7.
A theoretical investigation is made to study the influence of magnetic field on the onset of convection induced by centrifugal acceleration in a magnetic fluid filled porous medium. The layer is assumed to exhibit anisotropy in mechanical as well as thermal sense. Numerical solutions are obtained using the Galerkin method for the eigenvalue problem arising from the linear stability theory. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted depending on the anisotropy parameters to enhance convection. The effect of anisotropies of magnetic fluid filled porous media is shown to be qualitatively different from that of ordinary fluid filled porous media. This phenomenon may be helpful to increase the efficiency of suitable heat transfer devices.  相似文献   

8.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

9.
The jet boiling heat transfer of a bar water–CuO particle suspensions (nanofluids) jet impingement on a large flat surface was experimentally investigated. The experimental results were compared with those from water. The quantificational effects of the nanoparticles concentration and the flow conditions on the nucleate boiling heat transfer and the critical heat flux (CHF) were investigated. The experimental data showed that the jet boiling heat transfer for the water–CuO nanofluid is significantly different from those for water. The nanofluids have poor nucleate boiling heat transfer compared with the base fluid due to that a very thin nanoparticle sorption layer was formed on the heated surface. The CHF for the nanofluid increased compared with that of water. The reasons were that the solid–liquid contact angle decreased due to a very thin sorption layer on the heated surface and the jet and agitating effect of the nanoparticles on the subfilm layer enhance supply of liquid to the surface.  相似文献   

10.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

11.
Summary An analysis is made for the laminar free convection and heat transfer of a viscous electrically conducting fluid from a hot vertical plate in the case when the induced field is negligible compared to the imposed magnetic field. It is found that similar solutions for velocity and temperature exist when the imposed magnetic field (acting perpendicular to the plate) varies inversely as the fourth root of the distance from the lowest end of the plate. Explicit expressions for velocity, temperature, boundary layer thickness and Nusselt number are obtained and the effect of a magnetic field on them is studied. It is found that the effect of the magnetic field is to decrease the rate of heat transfer from the wall. In the second part, the method of characteristics is employed to obtain solutions of the time-dependent hydromagnetic free convection equations (hyperbolic) of momentum and energy put into integral form. The results yield the time required for the steady flow to be established, and the effect of the magnetic field on this time is studied.  相似文献   

12.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

13.
The unsteady laminar magnetohydrodynamics(MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink. The unsteady governing equations are solved by a shooting method with the Runge-KuttaFehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation number, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.  相似文献   

14.
In this article, the electrohydrodynamic (EHD) effects on nucleate boiling are studied by developing a numerical modelling of EHD effect on bubble deformation in pseudo-nucleate boiling conditions. The volume of fluid (VOF) method is employed to track the interface between the gas–liquid two phases; the user-defined code is written and added to the commercial software FLUENT to solve the electric field and the corresponding electric body force. On this basis, the model is applied to study the EHD effects on heat transfer and fluid flows. An initial air bubble surrounded by liquid CCl4 and attached to a horizontal superheated wall under the action of electric field is studied. The results of the EHD effect on bubble shape evolution are compared with those of available experiments showing good agreement. The mechanism of EHD enhancement of heat transfer and the EHD induced phenomena including bubble elongation and detachment are analyzed in detail.  相似文献   

15.
Effect of inclination angles on the pool boiling heat transfer on ultra-light copper foam covers was studied using acetone as the working fluid. The inclination angle was from 0° to 90°. It is found that copper foam covers decrease the surface superheat at the onset of nucleate boiling and extend the operation ranges of surface superheats and heat fluxes, significantly. Boiling curves are crossed between low and high inclination angles. Heat transfer coefficients are increased, attain maximum values, and then are decreased with continuous increases in heat fluxes. The thermal performance is very insensitive to inclination angles at low pool liquid temperatures. The thermal performance is better for the saturation pool boiling heat transfer at small surface superheats, but it is better for the subcooled pool boiling heat transfer at high surface superheats. The Nusselt number is well correlated using the 812 data points, with the maximum error of 20%.  相似文献   

16.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

17.
Exact solutions are obtained for the heat transfer in an electrically conducting fluid past a stretching sheet subjected to the thermal boundary with either a prescribed temperature or a prescribed heat flux in the presence of a transverse magnetic field. The solutions for the heat transfer characteristics are evaluated numerically for different parameters, such as the magnetic parameterN, the Prandtl numberPr, the surface temperature indexs, and the surface heat flux indexd. It is observed that for the prescribed surface temperature case the fluid temperature increases due to the existance of the magnetic field, and decreases as the Prandtl number or the surface temperature index increases; for the prescribed surface heat flux case, the surface temperature decreases as the Prandtl number of the surface heat flux index increases, and the magnetic parameter decreases. In addition, varying the prescribed surface temperature indexs affects the mechanism of heat transfer.  相似文献   

18.
The flow of paramagnetic fluid inside a cylinder placed in a bore of a superconducting magnet was studied experimentally. Single-phase closed thermosyphon configuration was employed. The lower side wall of the cylindrical enclosure was heated while the upper side wall was cooled with the thin adiabatic interface in between. The experiment was carried out with an aqueous solution of glycerol. The magnetic susceptibility of the working fluid was increased by adding Gd(NO3)3 × 6H2O and was measured by a magnetic susceptibility balance. The encapsulated liquid crystal slurry (KWN-2025, Japan Capsular Product Inc.) dispersed in the working fluid was illuminated in the middle height horizontal cross-section of the enclosure to visualize the temperature field. The color images of flow mode were taken by a digital camera. The average heat transfer rates were also measured. Depending on the Rayleigh number, different spoke patterns were observed. The number of angular structures (spokes) increased with increase not only in the Rayleigh number but also in the strength of magnetic field. The heated fluid was repelled by the magnetic field, while the cooled fluid was attracted. The magnetic field enhanced the heat transfer rate.  相似文献   

19.
The microporous coatings can remarkably enhance the liquid boiling heat transfer. Therefore, they are promising to be introduced into minichannels in the design of the cooling system of high-power microchips. However, the flow boiling heat transfer characteristics from microporous surfaces in the minichannels have not been extensively studied, and the pertinent knowledge is rather fragmentary. The present research is an experimental investigation on flow boiling of a dielectric fluid FC-72 from microporous coating surfaces in horizontal, rectangular minichannels of 0.49, 0.93 and 1.26 mm hydraulic diameter. Effects of coating structural parameters, such as the particle diameter and coating thickness, were investigated to identify the optimum microporous coating for heat transfer enhancement. All microporous surfaces in this paper were found to significantly enhance FC-72 flow boiling heat transfer in minichannels. With the optimum coating, the heat transfer coefficients could be 7-10 times those of the uncoated surface, and the boiling wall temperature was reduced by about 10 K. The flow boiling phenomena in the present minichannels were distinctly different from those in conventional-sized channels, due to the wall confinement effect on vapor bubbles. The confinement effect was evaluated by taking the contributions of the liquid mass flux and channel size into consideration. It was found that the very strong confinement effect was unfavorable with respect to flow boiling enhancement of the microporous coatings in the minichannels.  相似文献   

20.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号