首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The present study deals with the surface gravity wave interaction with submerged horizontal flexible porous plate under the assumption of small amplitude water wave theory and structural response. The flexible porous plate is modeled using the thin plate theory and wave past porous structure is based on the generalized porous wavemaker theory. The wave characteristics due to the interaction of gravity waves with submerged flexible porous structure are studied by analyzing the complex dispersion relation using contour plots. Three different problems such as (i) wave scattering by a submerged flexible porous plate, (ii) wave trapping by submerged flexible porous plate placed at a finite distance from a rigid wall and (iii) wave reflection by a rigid wall in the presence of a submerged flexible porous plate are analyzed. The role of flexible porous plate in attenuating wave height and creating a tranquility zone is studied by analyzing the reflection, transmission and dissipation coefficients for various wave and structural parameters such as angle of incidence, depth of submergence, plate length, compression force and structural flexibility. In the case of wave trapping, the optimum distance between the porous plate and rigid wall for wave reflection is analyzed in different cases. In addition, effects of various physical parameters on free surface elevation, plate deflection, wave load on the plate and rigid wall are studied. The present approach can be extended to deal with acoustic wave interaction with flexible porous plates.  相似文献   

2.
以聚苯乙烯(PS)微球为致孔剂、介孔二氧化硅纳米管(MSNT)为填充剂来改性多孔聚酰亚胺(PI),设计制备了多孔PI/MSNT复合薄膜,并对其孔结构和形貌进行了表征;在此基础上,以液体石蜡油为存储介质制备了多孔PI/MSNT复合含油润滑薄膜,系统考察了MSNT的添加对多孔PI薄膜的热稳定性、储油性能、力学性能和摩擦学性能的影响. 结果表明:与单组分PI含油薄膜相比,MSNT的加入不仅改善了多孔PI基体的热稳定性和力学性能,而且使得复合薄膜的储油性能和摩擦磨损性能均得到了显著提高,证实多孔PI/MSNT复合含油薄膜更适用于高载荷下的摩擦工况.   相似文献   

3.
鉴于硅藻壳精细的孔状结构和良好的力学性能,选取较为典型的圆筛藻为研究对象,对其摩擦学性能进行了流固耦合分析(FSI).首先建立了圆筛藻壳壁的三维模型,然后应用计算流体动力学理论分析了圆筛藻壳不同孔径、孔深、孔距和速度下,其承载力(抵抗水压的能力)、摩擦力和摩擦系数等性能,并将该结构与无孔结构性能对比.结果表明:相对于无孔壳,硅藻壳的精细孔状结构可以增大其承载力,减小其与水环境间的摩擦.且在选取的尺寸范围内,随着硅藻壳体孔径或孔深的增大,其承载力增大,摩擦系数减小.  相似文献   

4.
压缩载荷下孔隙结构变化的CT实验研究   总被引:1,自引:0,他引:1  
为了研究孔隙对岩石力学性能的影响,利用自制的孔隙物理模型,通过 单轴压缩和CT扫描实验研究了受载条件下孔隙率对岩石孔隙结构的演化及其对外部物理力 学性能的影响,得到了不同加载阶段和不同CT观察尺度下孔隙模型的裂纹扩展规律以及孔隙 和固体介质的损伤变化情况. 实验结果表明:孔隙模型在受载条件下裂纹主要发生在峰值荷 载之后,主裂纹大都集中在孔隙密集的地方且伴随许多细小裂纹的产生;峰值载荷前出现了 少数微裂纹,微裂纹的产生与演化主要发生在孔隙周边.  相似文献   

5.
A linear dynamic model of fully saturated porous media with local (either microscopic or mesoscopic) heterogeneities is developed within the context of Biot’s theory of poroelasticity. Viscoporoelastic behavior associated with local fluid flow is characterized by the notion of the dynamic compatibility condition on the interface between the solid and the fluid. Complex, frequency-dependent material parameters characterizing the viscoporoelasticity are derived. The complex properties can be obtained through determining the quasi-static poroelastic parameters, the properties of individual constituents, and the relaxation time of the dynamic compatibility condition on the interface. Relationships among various quasi-static poroelastic parameters are developed. It is shown that local fluid flow mechanism is significant only in the porous media with local heterogeneities. The relaxation time of the compatibility condition on the interface depends upon the details of local structure of porous media that control local fluid pressure diffusion. The new model is used to describe the velocity dispersion and attenuation in fully saturated porous media. The proposed model provides a theoretical framework to simulate the acoustical behavior of fully saturated porous media over a wide range of frequencies without making any explicit assumption about the structure of local heterogeneities.  相似文献   

6.
利用SHPB装置对钨丝增强Zr基非晶复合材料和钨骨架增强Zr基非晶复合材料进行了3种环境温度下多种应变率的动态压缩性能测试。比较了2种材料的动态力学性能,发现二者均具有应变率敏感性和较强的塑性变形能力。但二者承载机制存在较大差异。钨丝增强结构变形主要表现在钨丝的失稳,由数值模拟初步分析了这种局部结构失稳控制的变形以及热失稳现象;钨骨架增强结构变形前期钨骨架起主要承载作用,而不是各成分的共同作用,这导致材料的屈服强度比纯非晶和纯钨的低。  相似文献   

7.
A modified Voronoi cell finite element method is proposed to allow for fluid pressure within porous materials. Traction on the hole boundary can equal the force generated by the pressure, and multiplying the Lagrange multiplier by the constraints, we derive a new function. The stiffness matrix and load vector were derived from the modified element energy functional. Numerical examples with various boundary problems were evaluated using the proposed model and compared with a conventional displacement-based finite element model. The results show that the proposed method can measure the irregular local stress on porous materials that contain randomly distributed and sized holes with specifics pressures. The proposed method significantly reduces the number of elements and nodes of the calculated porous structure.  相似文献   

8.
In principle, network models can replicate exactly the microstructure of porous media. In practice, however, network models have been constructed using various assumptions concerning pore structure. This paper presents a network model of a real, disordered porous medium that invokes no assumptions regarding pore structure. The calculated permeability of the model agrees well with measured permeabilities, providing a new and more rigorous confirmation of the validity of the network approach. Several assumptions commonly used in constructing network models are found to be invalid for a random packing of equal spheres. In addition, the model permits quantification of the effect of pore-scale correlation (departure from randomness) upon permeability. The effect is comparable to reported discrepancies between measured permeabilities and predictions of other network models. The implications of this finding are twofold. First, a key assumption of several theories of transport in porous media, namely that pore dimensions are randomly distributed upon a network, may be invalid for real porous systems. Second, efforts both to model and to measure pore-scale correlations could yield more accurate predictions of permeability.  相似文献   

9.
The lattice Boltzmann method (LBM) for a binary miscible fluid mixture is applied to problems of transport phenomena in a three‐dimensional porous structure. Boundary conditions for the particle distribution function of a diffusing component are described in detail. Flow characteristics and concentration profiles of diffusing species at a pore scale in the structure are obtained at various Reynolds numbers. At high Reynolds numbers, the concentration profiles are highly affected by the flow convection and become completely different from those at low Reynolds numbers. The Sherwood numbers are calculated and compared in good agreement with available experimental data. The results indicate that the present method is useful for the investigation of transport phenomena in porous structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, the nonlinear dynamic responses of sandwich functionally graded(FG) porous cylindrical shell embedded in elastic media are investigated. The shell studied here consists of three layers, of which the outer and inner skins are made of solid metal, while the core is FG porous metal foam. Partial differential equations are derived by utilizing the improved Donnell's nonlinear shell theory and Hamilton's principle. Afterwards, the Galerkin method is used to transform the governing equations into nonlinear ordinary differential equations, and an approximate analytical solution is obtained by using the multiple scales method. The effects of various system parameters,specifically, the radial load, core thickness, foam type, foam coefficient, structure damping,and Winkler-Pasternak foundation parameters on nonlinear internal resonance of the sandwich FG porous thin shells are evaluated.  相似文献   

11.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

12.

This study examines the multiple layers in a rubble mound breakwater and their effect on reflection and dissipation of incoming ocean waves. The numerical model is developed using multi-domain boundary element method for oblique water wave trapping near a sloping wall by a multi-layered trapezoidal porous structure, which is utilized to model armour, filter and core layers while examining the hydrodynamics in different configurations. Both, the constant element and linear element approaches to boundary element method are discussed. The cases of bottom-standing porous structures as being submerged and fully extended are considered. The wave hydrodynamics over the structure is described by the reflection and dissipation coefficients along with the forces acting on the sloping wall, and is influenced by wave and structural parametrics of the system. The influence of armour layer in different configurations is highlighted for various structural and wave parameters.

  相似文献   

13.
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.  相似文献   

14.
低渗透多孔介质中的非线性渗流理论   总被引:5,自引:0,他引:5  
文中论述了低渗透性多孔介质中非线性渗流理论的几个问题,阐明了渗流流体的性质,指出了多孔介质对流体通过的选择性,提出了新的非线性渗流方程,用实验资料对其进行了验证,分析了该方程演变功能,表明它可以描述各种渗流规律.该方程的各项参数都可从实验中直接得到,应用方便,并且参数的物理意义明确.  相似文献   

15.
This study investigates numerically the turbulent flow and heat transfer characteristics of a T-junction mixing, where a porous media flow is vertically discharged in a 3D fully developed channel flow. The fluid equations for the porous medium are solved in a pore structure level using an Speziale, Sarkar and Gatski turbulence model and validated with open literature data. Overall, two types of porous structures, consisted of square pores, are investigated over a wide range of Reynolds numbers: an in-line and a staggered pore structure arrangement. The flow patterns, including the reattachment length in the channel, the velocity field inside the porous medium as well as the fluctuation velocity at the interface, are found to be strongly affected by the velocity ratio between the transversely interacting flow streams. In addition, the heat transfer examination of the flow domain reveals that the temperature distribution in the porous structure is more uniform for the staggered array. The local heat transfer distributions inside the porous structure are also studied, and the general heat transfer rates are correlated in terms of area-averaged Nusselt number accounting for the effects of Reynolds number, velocity ratio as well as the geometrical arrangement of the porous structures.  相似文献   

16.
This work concerns an analysis of the influence of a rigid skeleton pore structure on wave propagation in a fluid-filling porous medium. The analysis is based on the continuum theory of a deformable porous medium in which the pore structure is described by two macroparameters. Considerations comprise two questions: the influence of the pore structure on wave-propagation velocity analysed for the quasilinear case and the role of structure in the reflection-refraction wave phenomenon in fluid at the contact surface of two porous media. It has been shown that the pore structure reduces the velocity of wave and together with the angle of incidence it defines the reflection-refraction wave phenomenon.  相似文献   

17.
Two-parameter structure model of a porous solid is proposed as an approximation of a real porous structure and the macroscopic mass and momentum balance equations are derived for such a medium filled with liquid. The approach presented leads to the equations of motion for a fluid-saturated porous medium with coupling terms via cross-mass couplings. The linear form of these equations is equivalent to the well-known Biot equations.  相似文献   

18.
Complex structures used in the automotive industry often include porous materials, in order to reduce the noise in acoustic cavities. The method proposed in this paper aims at optimizing the characteristics of these porous materials using modal criteria based on the modal analysis of the structure. The use of a generalize modal synthesis method allow to describe the structure and the cavities with sets of modes; the size of the resulting system is smaller, for only generalized degrees of freedom are used for each part of the coupled fluid–structure system. First, a modelization of the porous media is proposed, and the generalized modal analysis method is explained. An optimization is then processed on the thickness of the porous materials.  相似文献   

19.
渗流是流体在多孔介质中的流动,渗流现象广泛地存在于自然界、工程材料、动物、植物中。多孔介质种类繁多,包括岩石(含各类矿藏)、土壤、生物材料和人工多孔介质材料等。渗流理论已经成为人类开发地下水、地热、石油、天然气、煤炭与煤层气等诸多地下资源的重要理论基础。本文从渗流的基本概念、渗流的分类、渗流的影响因素、渗流的特征以及渗流的研究意义等方面进行了阐述。  相似文献   

20.
The results of calculating the convective flow in cylindrical porous interlayers are presented as functions of the Rayleigh number, the thickness of the interlayer, and the three-dimensional permeability anisotropy for various methods of specifying the temperature on the cylindrical surfaces. The influence of the three-dimensional effects on the flow structure and heat transfer are analyzed. The existence of single-vortex and multivortex convection regimes is established and the conditions of transition to oscillatory and unsteady flow regimes are investigated in terms of the basic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号