首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We present the results of measurements of the total heat flux at the forward critical point of axially symmetric models placed in a high-temperature subsonic stream of air and nitrogen in an apparatus which uses a high-frequency inductive discharge [1] to heat the gas. The heat fluxes were measured for cylindrical models whose forward part had one of three possible shapes: a hemisphere, a hemisphere with a blunt nose, or a flat circular end-face. A water-cooled calorimeter sensor was set up at the forward critical point of the model; the calorimeter sensor was made of different materials, so that it was possible to estimate the radiant and convective components of the total heat flux and determine the effect of the sensor material on the heat flux measured. The convective component of the heat flux was compared to a calculated value obtained by Fay and Riddell's formula. The heat-flux values found for two shapes of models were used in determining the effective radius of streamline flow for a model with a plane end-face.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 133–141, September–October, 1973.The authors are grateful to N. I. Nesterov for his help with the work.  相似文献   

2.
The steady increase in internal heat production of cost and high performance electronic components has lead researchers to seek improved ways to remove the heat generated. Single-phase liquid flow has been considered as a potential solution for solving this cooling problem. However, when considering that any solution needs to be of low cost and low mass fluxes and yet retain low temperature gradients across the electronic components, it seems that two-phase boiling flow is preferred. Surfactant solutions have been introduced in connection with enhancement of the boiling processes. We investigated the effects of surfactant solution flows through a micro-channel heat sink. The experimental setup included a high-speed IR radiometer and a CCD camera that were used to characterize the test module. The module consisted of inlet and outlet manifolds that distributed surfactant solutions through an array of 26 parallel micro-channels. The experimental results have shown that there exists an optimal solution concentration and mass flux for enhancing heat removal. Surfactant solution boiling flows were also found to stabilize the maximum and average surface temperatures for a wide range of applied heat fluxes. In addition, the use of surfactant solutions at low mass fluxes has led to CHF enhancement when compared to regular water flows. In the last part of this work, possible explanations for the observed non-ionic surfactant effects are presented.  相似文献   

3.
Distilled water and nitrogen gas used as the working fluids flow through the stainless steel microtube with inner diameter 168 μm outer diameter 406 μm. Using the Joule heating, the wall temperature field photos of the microtube is acquired by employing an IR camera and the temperature and the volume flow rate of the inlet and the outlet of microtube are measured. A correlation between the axial wall heat conduction and the convective heat transfer is obtained by theoretical analysis based on the experimental results. The investigative results clearly show that the axial heat conduction can reduce the convective heat transfer in the stainless steel microtube and the decrement may reach 2% compared to the convective heat transfer when the working fluid is nitrogen gas, however, the decrement can be neglected for distilled water as the working fluid.  相似文献   

4.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

5.
The gravity convection in a plane horizontal colloid layer heated from below has been investigated experimentally and numerically. The temperatures and heat fluxes were measured using thermocouples. The flows were visualized using a thermosensitive liquid-crystal film. The Fourier and wavelet spectra of the thermal signals have been calculated. The numerical calculations were based on the model of a two-phase mixture of rigid particles with a carrier fluid. It was found that in colloids the branching-off of convective flows from mechanical equilibrium is hard and has an hysteresis. On the investigated interval up to four supercriticalities the spatio-temporal structures are irregular and wavy, which can be attributed to the competition between thermally and barometrically induced density drops.  相似文献   

6.
《Comptes Rendus Mecanique》2002,330(12):857-864
In this work we present an experimental apparatus devoted to the thermal characterisation of a milling tool. The experimental device used thermistors, one for each insert. Each thermistor is located at a point in the tool close to the tip of the insert. The heat flux in each insert is expressed according to the temperature at the sensor from a non-integer model. The parameters of the model are identified from transient evolutions measurements of the temperature on the sensor and on the cutting edge. An application shows the difference in the behaviour of each insert during machining from the estimated heat fluxes. To cite this article: J.-L. Battaglia et al., C. R. Mecanique 330 (2002) 857–864.  相似文献   

7.
Buoyant flows often contain regions with unstable and stable thermal stratification from which counter gradient turbulent fluxes are resulting, e.g. fluxes of heat or of any turbulence quantity. Basing on investigations in meteorology an improvement in the standard gradient-diffusion model for turbulent diffusion of turbulent kinetic energy is discussed. The two closure terms of the turbulent diffusion, the velocity-fluctuation triple correlation and the velocity-pressure fluctuation correlation, are investigated based on Direct Numerical Simulation (DNS) data for an internally heated fluid layer and for Rayleigh–Bénard convection. As a result it is decided to extend the standard gradient-diffusion model for the turbulent energy diffusion by modeling its closure terms separately. Coupling of two models leads to an extended RANS model for the turbulent energy diffusion. The involved closure term, the turbulent diffusion of heat flux, is studied based on its transport equation. This results in a buoyancy-extended version of the Daly and Harlow model. The models for all closure terms and for the turbulent energy diffusion are validated with the help of DNS data for internally heated fluid layers with Prandtl number Pr = 7 and for Rayleigh–Bénard convection with Pr = 0.71. It is found that the buoyancy-extended diffusion model which involves also a transport equation for the variance of the vertical velocity fluctuation gives improved turbulent energy diffusion data for the combined case with local stable and unstable stratification and that it allows for the required counter gradient energy flux.  相似文献   

8.
A numerical study of laminar forced convective flows of three different nanofluids through a horizontal circular tube with a constant heat flux condition has been performed. The effect of Al2O3 volume concentration 0 ≤ φ ≤ 0.09 in the pure water, water-ethylene glycol mixture and pure ethylene glycol as base fluids, and Reynolds number of 100 ≤ Re ≤ 2,000 for different power inputs in the range of 10 ≤ Q(W) ≤ 400 have been investigated. In this study, all of the nanofluid properties are temperature and nanoparticle volume concentration dependent. The governing equations have been solved using finite volume approach with the SIMPLER algorithm. The results indicate an increase in the averaged heat transfer coefficient with increasing the mass of ethylene glycol in the water base fluid, solid concentration and Reynolds number. From the investigations it can be inferred that, the pressure drop and pumping power in the nanofluids at low solid volumetric concentration (φ < 3%) is approximately the same as in the pure base fluid in the various Reynolds numbers, but the higher solid nanoparticle volume concentration causes a penalty drop in the pressure. Moreover, this study shows it is possible to achieve a higher heat transfer rate with lower wall shear stress with the use of proper nanofluids.  相似文献   

9.
This paper describes an experimental investigation at Reynolds number equal to 5000 on circular and chevron impinging jets by means of time-resolved tomographic particle image velocimetry (TR-TOMO PIV) and infrared (IR) thermography. TR-TOMO PIV experiments are performed at kilo-hertz repetition rate in a tailored water jet facility where a plate is placed at a distance of 4 diameters from the nozzle exit. Using air as working fluid, time-averaged convective heat transfer is measured on the impinged plate by means of IR thermography with the heated-thin-foil heat transfer sensor for nozzle-to-plate distances ranging from 2 to 10 diameters. The circular impingement shows the shedding and pairing of axisymmetric toroidal vortices with the later growth of azimuthal instabilities and counter-rotating streamwise vortices. In the chevron case, instead, the azimuthal coherence is replaced by counter-rotating pairs of streamwise vortices that develop from the chevron notches. The heat transfer performances of the chevron impingement are compared with those of the circular one, analyzing the influence of the nozzle-to-plate distance on the distribution of Nusselt number. The chevron configuration leads to enhanced heat transfer performances for all the nozzle-to-plate distances hereby investigated with improvements up to 44% at the center of the impinged area for nozzle-to-plate distance of 4. Such enhancements are discussed in relation to the streamwise structures that, compared with the toroidal vortices, are associated with an earlier penetration of turbulence towards the jet axis and a higher arrival speed.  相似文献   

10.
In a former article in this journal a double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil was introduced as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. For further investigations with respect to the underlying sensor concept a triple sensor has been built which consists of three double layer film sensors very close to each other. Various aspects of heat transfer measurements in active modes can be addressed by this sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号