首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The problem of an infinite elastic plane that contains a hole of arbitrary shape and is subjected to a concentrated unit load is considered. The Green's function (influence function) for the problem is formulated by means of two complex potential functions. This is accomplished by mapping the region that is exterior to the hole onto a unit circle. A class of closed contour hole shapes is analyzed. Green's functions for an elliptical hole and a class of triangular holes are determined. Green's functions for a class of rectangular holes are also discussed. In order to determine stress and displacement fields for the finite plane problem, Green's function is employed and an indirect boundary integral equation is formulated, with the integrand of the integral equation incorporating the effect of the hole. The contour of the hole is no longer considered a part of the boundary and only the contour of the region that is exterior to the hole is subdivided into boundary elements. Examples for elliptical and triangular holes are solved.  相似文献   

2.
By application of complex variables and conformal transformation, the general solution to multiply connected domains of two dimensions is constructed in terms of multiple Laurent series for thermopiezoelectric materials. Three typical boundaries, i.e., a rectangular contour, a curvilinear hole, and a line crack are considered in the paper. Though the Green’s function of an arbitrarily shaped hole still remains unknown for anisotropic materials, the approximate solutions both for thermal and electro-mechanical fields are obtained in explicit form by the least square method. The accuracy of the approximation are investigated upon each boundary contours. It is found that the local error on the crack surface diminishes below 10−7% by adopting only 20 terms of related power series. For a rectangular plate, the precision is enhanced up to the level of 99.99% on its boundary contour by adding the supplementary function, due to the rectangular corners, into the complex solution. Considering that the singular character of a crack is retained in the solution, the stress and electric displacement intensity factors influenced by the hole width and plate size are exhibited herein.  相似文献   

3.
We solve the problem of determining the stress-strain state of an anisotropic plate with an elliptic hole and a system of thin rectilinear elastic inclusions. We assume that there is a perfect mechanical contact between the inclusions and the plate. We deal with a more precise junction model with the flexural rigidity of inclusions taken into account. (The tangential and normal stresses, as well as the derivatives of the displacements, experience a jump across the line of contact.) The solution of the problem is constructed in the form of complex potentials automatically satisfying the boundary conditions on the contour of the elliptic hole and at infinity. The problem is reduced to a system of singular integral equations, which is solved numerically. We study the influence of the rigidity and geometry parameters of the elastic inclusions on the stress distribution and value on the contour of the hole in the plate. We also compare the numerical results obtained here with the known data.  相似文献   

4.
A two-dimensional photoelastic study was made of the stresses produced in a regular hexagon with a central, circular hole when subjected to external pressure. Four sizes of the hole were tested, and three types of loading were used. This paper describes the pressure-loading fixtures and the procedure which was used to calibrate them. An experimental confirmation of the theoretical solution of Kawaguchi1 is given, and typical stress patterns and boundary stress distributions are included.  相似文献   

5.
Ming Dai  Cun-Fa Gao  C. Q. Ru 《Meccanica》2014,49(12):2847-2859
This paper studies surface tension-induced stress concentration around a nanosized hole of arbitrary shape inside an elastic half-plane. Of particular interest is the maximum hoop stress on the hole’s boundary with relation to the point of maximum curvature and the distance between the hole and the free surface of the half-plane. The shape of the hole is characterized by a conformal mapping which maps the exterior of the hole onto the exterior of the unit circle in the image plane. On using the technique of conformal mapping and analytic continuation, the complex potentials of the half-plane are expressed in a series form with unknown coefficients to be determined by Fourier expansion method. Detailed numerical results are shown for elliptical, triangular, square and rectangular holes. Two basic conclusions are that the hoop stress increases with decreasing hole size and the maximum hoop stress generally appears nearby but not exactly at the point of maximum curvature. In addition, it is shown that the hoop stress nearby the point of maximum curvature on the hole’s boundary increases rapidly with decreasing distance between the hole and the free surface of the half-plane. On the other hand, if the distance between the hole and the free surface is more than three times the hole size, the effect of the free surface on the stress concentration around the hole is ignorable and the elastic half-plane can be treated approximately as an elastic whole plane.  相似文献   

6.
The problem of finding the optimum shape of the holes in a perforated plate weakened by a triangular or square lattice of holes and subject to bending is considered by methods based on the theory of functions of a complex variable. The criterion determining the optimum shape of the hole is based on the condition that no stress concentration should occur on the hole contour or, alternatively, that a plastic region should be created around the whole contour of the hole at exactly the same instant.  相似文献   

7.
We examine the surface tension-induced stress concentration around an elliptical hole inside an anisotropic half-plane with traction-free surface. Using conformal mapping techniques, the corresponding complex potential in the half-plane is expressed in a series whose unknown coefficients are determined numerically. Our results indicate that the maximum hoop stress around the hole (which appears in the vicinity of the point of maximum curvature) increases rapidly with decreasing distance between the hole and the free surface. In particular, for an elliptical or even circular hole in an anisotropic half-plane we find that, with decreasing distance between the hole and the free surface, the hoop stress can switch from compressive to tensile at certain points on the hole's boundary and from tensile to compressive at others. This phenomenon is absent in the case of an elliptical or even circular hole in the corresponding case of an isotropic half-plane.  相似文献   

8.
吴晓 《力学季刊》2016,37(3):581-589
采用弹性理论研究了拉压不同弹性模量薄板上圆孔的孔边应力集中问题.采用广义虎克定律推导出了拉压不同弹性模量薄板上圆孔边的应力平衡方程,并联合利用应力函数及边界条件得到了拉压不同弹性模量薄板上圆孔边的应力表达式.算例分析表明,当薄板材料的拉压弹性模量相差较大时,采用经典弹性理论研究薄板上圆孔的孔边应力是不合适的,当经典弹性理论与拉压不同弹性模量弹性理论的计算结果间的差别超过工程允许误差5%时,应该采用拉压不同弹性模量弹性理论进行计算.  相似文献   

9.
The stress-strain state of an anisotropic plate containing an elliptic hole and thin, absolutely rigid, curvilinear inclusions is studied. General integral representations of the solution of the problem are constructed that satisfy automatically the boundary conditions on the elliptic-hole contour and at infinity. The unknown density functions appearing in the potential representations of the solution are determined from the boundary conditions at the rigid inclusion contours. The problem is reduced to a system of singular integral equations which is solved by a numerical method. The effects of the material anisotropy, the degree of ellipticity of the elliptic hole, and the geometry of the rigid inclusions on the stress concentration in the plate are studied. The numerical results obtained are compared with existing analytical solutions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 173–180, July–August, 2007.  相似文献   

10.
Abstract

The optimal design of the stress state in elastic plate structures with openings is a problem of great significance in engineering practice. Achieving proper shape of hole can reduce stress concentration around the boundaries remarkably. The optimal shape of a single hole in an infinite plate under uniform stresses has been obtained by complex variable method based on different optimal criteria. The complex variable method is particularly suitable for the hole shape optimization in infinite plate, in which the continuous hole boundary can be represented by the mapping function. It can also be used to solve the shape optimization problems of two or more holes. However, because of the difficulty of finding the mapping function for multi connected domain, the holes are mapped onto slits or separately mapped onto a circle. In this article, the two symmetrical and identical holes are mapped onto an annulus simultaneously by the newly found mapping function, which has a general form. The maximum tangential stress around the boundaries is minimized to achieve the optimal hole shape. And the coefficients of mapping function which describe the boundary are calculated by differential-evolution algorithm.  相似文献   

11.
The contour integral method previously used to determine static stress intensity factors is applied to dynamic crack problems. The required derivatives of the traction in the reference problem are obtained numerically by the displacement discontinuity method. Stress intensity factors are determined by an integral around a contour which contains a crack tip. If the contour is chosen as the outer boundary of the body, the stress intensity factor is obtained from the boundary values of traction and displacement. The advantage of this path-independent integral is that it yields directly both the opening-mode and sliding-mode stress intensity factors for a straight crack. For dynamic problems, Laplace transforms are used and the dynamic stress intensity factors in the time domain are determined by Durbin's inversion method. An indirect boundary element method, incorporating both displacement discontinuity and fictitious load techniques, is used to determine the boundary or contour values of traction and displacement numerically.  相似文献   

12.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

13.
When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analytical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concentrated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the optimized concentrated forces are applied.  相似文献   

14.
点阵材料微极连续介质模型的应力优化设计   总被引:3,自引:2,他引:3  
阎军  程耿东  刘岭  刘书田 《力学学报》2006,38(3):356-363
在将二维周期性点阵类材料等效为具有非局部化本构的微极连续介质的基础上,运用优化技术,探讨了基于材料相对密度和微单胞特征尺度两类变量的优化结构应力的方法,给出了针对最小化结构关键部位应力、结构最大应力最小化、最大化结构关键部位安全储备三类特定目标的结构与材料一体化协同优化结果.利用圆板小孔应力集中的数值算例验证了方法的有效性.  相似文献   

15.
Green’s functions of a point dislocation as well as a concentrated force for the plane problem of an infinite plane containing an arbitrarily shaped hole under stress, displacement, and mixed boundary conditions are stated. The Green’s functions are obtained in closed forms by using the complex stress function method along with the rational mapping function technique, which makes it possible to deal with relatively arbitrary configurations. The stress functions for these problems consist of two parts: a principal part containing singular and multi-valued terms, and a complementary part containing only holomorphic terms. These Green’s functions can be derived without carrying out any integration. The applications of the Green’s functions are demonstrated in studying the interaction of debonding and cracking from an inclusion with a line crack in an infinite plane subjected to remote uniform tension. The Green’s functions should have many other potential applications such as in boundary element method analysis. The boundary integral equations can be simplified by using the Green’s functions as the kernels.  相似文献   

16.
We study the reinforcement of an infinite elastic plate with a circular hole by a larger eccentric circular patch completely covering the hole and rigidly adjusted to the plate along the entire boundary of itself. We assume that the plate and the patch are in a generalized plane stress state generated by the action of some given loads applied to the plate at infinity and on the boundary of the hole. We use the power series method combined with the conformal mapping method to find the Muskhelishvili complex potentials and study the stress state on the hole boundary and on the adhesion line. We consider several examples, study how the stresses depend on the geometric and elastic parameters, and compare the problem under study with the case of a plate with a circular hole without a patch. In scientific literature, numerous methods for reinforcing plates with holes, in particular, with circular holes, have been studied. In the monographs [1, 2], the problem of reinforcing the hole edges by stiffening ribs is solved. Methods for reinforcing a circular hole by using two-dimensional patches pasted to the entire plate surface are studied in [3, 4]. The case of a plate with a circular cut reinforced by a concentric circular patch adjusted to the plate along the boundary of itself or along some other circle was studied in [5, 6]. The reinforcement of an elliptic hole by a confocal elliptic patch was considered in [7].  相似文献   

17.
A solution of the bending problem for a plate with an elliptical hole subjected to a point force (a singular solution) is obtained using the engineering theory of thin anisotropic plates and Lekhnitskiis complex potentials. The solution is constructed by conformal mapping of the exterior of the elliptical hole onto the exterior of a unit circle with evaluation of the Cauchy-type integrals over closed contours. Different versions of the boundary conditions on the holw contour are considered. In the limiting case where the ellipse becomes a slot, the solution describes the bending of a plate with a rectilinear crack or a rigid inclusion.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 144–152, January–February, 2005.  相似文献   

18.
The paper addresses a problem of plane elasticity for a doubly connected body with outer and inner boundaries in the form of regular polygons with a common center and parallel sides. The neighborhoods of the vertices of the inner boundary are unknown equal full-strength smooth arcs symmetric about the rays coming from the vertices to the center. It is assumed that this elastic body is inserted into a hole of a rigid body, with the hole boundary coinciding with the outer boundary of the elastic body. Absolutely smooth rigid punches with rectilinear bases are pressed into all the rectilinear sections of the inner polygonal boundary of the elastic body. There is no friction between the elastic and rigid bodies. The unknown arcs are free from external stresses. Complex variable theory is used to determine the unknown arcs and the stress state of the elastic body __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 3, pp. 110–118, March 2006.  相似文献   

19.
A variant of the boundary element method, called the boundary contour method (BCM), offers a further reduction in dimensionality. Consequently, boundary contour analysis of two-dimensional problems does not require any numerical integration at all. In another development, a boundary contour implementation of a regularized hypersingular boundary integral equation (HBIE) using quadratic elements and end-node collocation was proposed and the technique is termed the hypersingular boundary contour method (HBCM). As reported in that work, the approach requires highly refined meshes in order to numerically enforce the stress continuity across boundary contour elements. This continuity requirement is very crucial since the regularized HBIE is only valid at collocation points where the stress tensor is continuous, while the computed stress at the endpoints of a boundary contour element, which is a non-conforming element, is generally not. This paper presents a new implementation of the HBCM for which the regularized HBIE is collocated at the mid-node of a boundary contour element. As the computed stress tensor is continuous at these mid-nodes, there is no need for unusually refined meshes. Some numerical tests herein show that, for the same mesh density, the HBCM using mid-node collocation has a comparable accuracy as the BCM.  相似文献   

20.
This paper combines measured isochromatic information, complex stress functions and numerical concepts into a new and effective hybrid method of stress analysis. The technique simultaneously smooths the measured isochromatic data, provides accurate boundary information, and separates the isochromatic information into normal and shear stresses at nonboundary locations. No additional experimental data such as the isoclinics are needed. The technique is illustrated experimentally by application to a tensile plate containing a hole.Paper was presented at the 1990 SEM Spring Conference held in Albuquerque, NM on June 3–6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号