首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Plane-parallel vortex systems in a viscous incompressible fluid in channels with parallel walls and in a corner with no-slip conditions on the walls are investigated on the basis of exact solutions of the biharmonic equation. It is found that separation zones and paired (joined) vortices are formed when the fluid flows through these channels and the fluid flow path between these vortex formations is traced. The flow structures are considered in the region of intrusion of the Poiseuille or Hamel flow into the zone of predominance of the intense vortex formations and for outflow of the fluid from this zone.  相似文献   

2.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

3.
We report experimental work on mass transfer enhancement through pulsatile flow in an asymmetric channel under the laminar flow condition. Mass transfer experiments were carried out by the electrochemical method. The vortices dynamics were visualized both experimentally and numerically. The present results were compared with previous ones in the case of a symmetric channel with the same sinusoidal wavy walls. The mass transport enhancement factor for the asymmetric channel is found to be larger than that for the symmetric channel, for a wide range of flow parameters. This is a consequence of the specific fluid mixing induced by vortices dynamics. It is also confirmed that the Sherwood number for pulsatile flow can be expressed in terms of the Sherwood numbers for steady and oscillatory flows at large amplitude of fluid oscillation, for both channels.  相似文献   

4.
A study was made of the axisymmetric flow of a viscous incompressible fluid in the neighborhood of the critical point of an obstacle when steady-state vortices oriented in the direction of the angular coordinate are introduced into the oncoming flow. A solution is presented of the equation for the transfer of a vortex in the case of an external flow containing a single largesize vortex in the low-frequency part of the spectrum. Using a finite integral Hankel transform, the problem is reduced to the solution of a system of ordinary differential equations. It is shown that a sufficiently large-size vortex can have a considerable effect on the structure of viscous flow near an obstacle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 85–89, November–December, 1970.  相似文献   

5.
6.
This paper deals with an Eulerian formulation of the theory of directed fluid sheets appropriate for incompressible, linear viscous fluid flow in channels with arbitrary shapes for their major boundaries which may be moving or fixed. Special cases of the theory are applied to a number of two-dimensional fluid flow problems and these solutions are in general discussed for unsteady flow. Specific applications include fluid flow in a channel whose boundaries are symmetric with respect to a middle plane in the channel, subjected to time-dependent pressure gradient at one end; and to lubrication problems in a general shaped channel when one of the channel walls is a fixed plane while the other is moving with a constant velocity. Flow of a viscous fluid with a free surface over a fixed boundary is also discussed.Dedicated to J. L. Ericksen on the occasion of his Sixtieth Birthday  相似文献   

7.
It is shown that the core of a swirled helical flow can be described using a novel exact nonstationary solution of the hydrodynamic equations for a viscous incompressible fluid, which generalizes the rigid-body asymptotics for the Burgers and Sullivan vortices in the form of rigid-body rotation with a finite helicity. An estimate of the pressure fluctuations corresponding to this nonstationary vortex regime, which is proportional to the frequency of the swirled-jet core rotation as a rigid body and also depends on the parameters of the initial velocity field structure, is obtained. It is noted that this frequency may correspond to the frequency observed in the pressure fluctuation spectrum, which is almost proportional to the swirled flow rate in vortex acoustic emitters.  相似文献   

8.
Mass transfer for oscillatory flow was studied experimentally in channels with two different geometries, i.e., a periodically converging-diverging channel and a serpentine channel, both having sinusoidal wavy walls. The experiments were carried out under the following conditions: 10<Re<500 and 0.008<St<0.05. The channel geometries were found to have an important effect on the flow patterns and the mass transfer rates. At low Strouhal numbers of less than 0.023, the mass transfer rates for both channels were almost identical, regardless of different flow patterns and wall shear stresses. At high Strouhal numbers, however, the serpentine channel had a smaller mass transfer rate than the converging-diverging channel. The mass transfer characteristics were explained in terms of the vortex dynamics, wall shear stresses and fluid mixing based on numerical analysis and flow visualizations. The serpentine channel yields a better mass transfer and pumping power performance than the converging and diverging channel at low Strouhal numbers.
Schwingungsströmung und Stofftransport innerhalb asymmetrischer und symmetrischer Kanäle mit sinusförmig gewellten Wandungen
Zusammenfassung Der Stofftransport bei Schwingungsströmungen in Kanälen mit zwei verschiedenen Geometrien experimentell untersucht, d.h. in einem periodisch konvergierenden und divergierenden Kanal und einem schlangenförmig gewundenen Serpentinenkanal, wobei die Kanäle jeweils sinus förmig gewellte Wandungen aufwiesen. Die Versuche wurden unter folgenden Bedingungen, ausgeführt; 10<Re<500 und 0.008<St<0.05. Es zeigte sich, daß die Kanalgeometrien einen erheblichen Einfluß auf die Strömungsmuster und Stofftransportraten haben. Bei niedrigen Strouhal-Zahlen unter 0.023 waren die Stofftransportraten beider Kanäle praktisch identisch, und zwar unabhängig von unterschiedlichen Strömungsmustern und Wand-Scherspannungen. Bei hohen Strouhal-Zahlen dagegen zeigte der Serpentinenkanal eine geringere Stofftransportrate als der Konvergenz-Divergenz-Kanal. Diese Stofftransport-Charakteristik wurde, basierend auf numerischer Analyse und Sichtbarmachung der Strömung, erklärt in Form von Vortexdynamic, Wand-Scherspannungen und Flüssigkeitsmischung. Bei niedrigen Strouhal-Zahlen erbringt der Serpentinenkanal ein besseres Stofftransport- und Pumpleistungsverhalten als der Konvergenz-Divergenz-Kanal.

Nomenclature A area of mass transfer surface - a wave amplitude of wavy wall - c b concentration of the ferricyanide ion - D diameter of piston - D molecular diffusivity of the ferricyanide ion - F Faraday constant - f frequency of oscillation - H min minimum spacing between wavy walls - Re Reynolds number, Eq. (4) - s length of stroke of piston - Sc Schmidt number - Sh Sherwood number, Eq. (5) - St Strouhal number, Eq. (3) - T period of oscillation - U p peak velocity based onH min - W width of wavy wall Greek symbols wavelength of wavy wall - kinematic viscosity - w wall vorticity - max vortex strength - angle of misalignment of the two channel walls This work was supported in part by a Grant-in-Aid for Science Research (No. 63750889 and No. 03302031) from the ministry of Education, Science and Culture of Japan. The author acknowledge with thanks the assistance of graduate student Shigeki Matsune in the computations.  相似文献   

9.
This brief communication quantifies the time-events that contribute to the dynamics of wall-bounded flows with rough walls. Lumley’s Proper Orthogonal Decomposition (POD) methodology has been used to extract the energetic modes of the flow. We have used the concept of entropy, a representation of lack of organization in the flow, to represent the extent of spread of turbulent kinetic energy to higher modes. The rough-wall dynamics is dominated by fast activity (short time period) propagating modes and slow activity (long time period) roll modes. A single dominant timescale has been captured for all the propagating modes in flows over smooth walls; multiple dominant timescales representing various vortex shedding events are captured for rough walls. Variable-interval time averaging technique has been used to obtain the bursting frequency. The bursting frequency of rough-wall turbulence is higher compared to smooth-wall turbulence, suggesting that roughness enhances turbulence production activity. Another insightful observation for rough walls revealed by our study is that the vortex shedding frequency of roughness elements is much higher compared to the bursting frequency of rough-wall turbulence. POD provides a straightforward method to extract the natural frequency of shed vortices due to roughness, an important dynamical activity in rough-wall turbulent boundary layers.  相似文献   

10.
混合层强化混合的数值研究   总被引:2,自引:0,他引:2  
罗纪生  肖左利 《力学学报》2002,34(2):168-176
受 Wang & Fiedler(1997)的实验的启发,采用高阶精度的差分格式,通过数值模拟的方法,研究了二维混合层及限于两平板间的二维混合层(二维受限混合层)入口处加振动对提高混合层混合效率的作用.计算结果表明:对二维混合层,振动的频率越低,在混合层中产生的大尺度涡结构的尺度越大,在频率很低时,涡具有相似性;对限于两平板间的二维混合层,在一定的振动频率下,混合层中产生的涡较大而且破碎得也较好,这将有利于混合.这一结论与 Wang & Fiedler(1997)的实验观测到的结果是一致的.  相似文献   

11.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

12.
The problem investigated relates the plane unsteady flow of a viscous incompressible fluid in a narrow channel one of whose walls is free and acted upon by a given load, while the other is rigidly fixed. The fluid enters the channel through a porous insert in the stationary wall. A model of the flow of a thin film of viscous incompressible fluid and Darcy's law for flow in a porous medium are used to find the distribution of fluid pressure and velocity in the channel and the porous insert in the two-dimensional formulation for fairly general boundary conditions in the case where the length of the porous insert exceeds the length of the free wall. In the particular case where the length of the porous insert is equal to the length of the free wall an exact stationary solution of the problem is obtained for a given value of the channel height. The stability of the equilibrium position of the free wall supported on a hydrodynamic fluid film is examined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–24, January–February, 1986.  相似文献   

13.
The problem of unsteady oscillatory flow and heat transfer of two viscous immiscible fluids through a horizontal channel with isothermal permeable walls has been considered. The partial differential equations governing the flow and heat transfer are solved analytically using two-term harmonic and non-harmonic functions in both fluid regions of the channel. Effects of physical parameters such as viscosity ratio, conductivity ratio, Prandtl number and frequency parameter on the velocity and temperature fields are shown graphically. It is observed that the velocity and temperature decrease as the viscosity ratio increases, while they increase with increases in frequency parameter. The effect of increasing the thermal conductivity ratio also suppresses the temperature in both fluid regions. The effect of periodic frequency on the flow is depicted in tabular form. It is predicted that both the velocity and temperature profiles decrease as the periodic frequency increases.  相似文献   

14.
Wakes behind heated cylinders, circular, and square have been experimentally investigated at low-Reynolds numbers. The electrically heated cylinder is mounted in a vertical airflow facility such that buoyancy aids the inertia of main flow. The operating parameters, i.e., Reynolds number and Richardson number are varied to examine flow behavior over a range of experimental conditions from forced to mixed convection regime. Laser schlieren-interferometry has been used for visualization and analysis of flow structures. Complete vortex shedding sequence has been recorded using a high-speed camera. The results on detailed dynamical characteristics of vortical structures, i.e., their size, shape and phase, Strouhal number, power spectra, convection velocity, phase shift, vortex inception length, and fluctuations are reported. On heating, alteration of organized (coherent) structures with respect to shape, size and their movement is readily perceived from instantaneous Schlieren images before they reduce to a steady plume. For both cylinders, Strouhal number shows a slow increase with an increase in Richardson number. At a critical value, there is complete disappearance of vortex shedding and a drop in Strouhal number to zero. The corresponding spectra evolve from being highly peaked at the vortex shedding frequency to a broadband appearance when vortex shedding is suppressed. The geometry of vortex structures transforms to a slender shape before shedding is suppressed. At this heating level, absence of multiple peaks in power spectra at cylinder centerline indicates absence of interaction between opposite shear layers. The convection velocity of vortices increases in stream wise direction to an asymptotic value and its variation is a function of Richardson number. The convection speed abruptly falls to zero at critical Richardson number. The phase difference of shed vortices between upstream and downstream location increases with an increase in Richardson number. Velocity profiles show an increase in fluid speed and beyond the critical point, buoyancy forces add enough momentum to cancel momentum deficit due to the cylinder. Overall, the combined effect of temperature gradient on the separating shear layer velocity profile in near field and vortical structures interaction in far field influences wake instability of a heated cylinder. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The purpose of this research is to investigate steady axisymmetric swirling flows in channels and free vortices and also to establish the role of hydrodynamic instability in the formation of the sharp changes in flow structure associated with an increased rate of rotation. On the basis of numerical solutions of the complete Navier-Stokes equations obtained by a finite-difference method swirling flows in pipes with impermeable and permeable walls and in a free vortex are investigated. The stability of the swirling axisymmetric flows is considered on the assumption of local parallelism: the problem of the normal modes developing against the background of the axisymmetric flow determined by the velocity profiles in local cross sections of the flow is solved. Attention is mainly concentrated on free vortex flows with reverse current zones, their structure and stability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 3–11, July–August, 1988.  相似文献   

16.
An integral expression of pressure via dynamical characteristics of the vortex and velocity fields for viscous fluid is presented. This expression may be considered as an analog (or generalization) of the Bernoulli equation for nonstationary vortex flows of ideal or viscous fluids, including the case of an external nonconservative mass force. The presented formulas are useful for calculating the pressure field when meshless vortex methods are applied for the flow simulation.  相似文献   

17.
The flow resulting from the collision without rebound of generic bluff bodies with a wall in a still viscous fluid is investigated both computationally and experimentally. Emphasis is on the case of a circular cylinder impact (two-dimensional geometry), but comparisons with the flow generated by the impact of a sphere (axisymmetric geometry) are included. For normal cylinder impacts, the two counter-rotating vortices forming behind the body during its motion continue their trajectory towards the wall after the collision, leading to the generation of opposite-signed secondary vorticity at the cylinder and wall surfaces. Secondary vortices forming from this vorticity at higher Reynolds numbers exhibit a short-wavelength three-dimensional instability. Comparison with the sphere impact reveals significant differences in the scales of the vortices after the collision, due to the additional vortex stretching acting in the axisymmetric geometry. This leads to a delay in the onset of three-dimensionality and to a different instability mechanism. Oblique cylinder impacts are also considered. For increasing impact angles, the wall effect is gradually reduced on one side of the cylinder, which favours the roll-up of the secondary vorticity and increases the rebound height of the vortex system.  相似文献   

18.
This paper considers an entrance flow into the channels formed by a stack of parallel plates, placed in an acoustic resonator that provides oscillatory flow forcing. Interesting complex flow phenomena around the extremity of the stack are observed, essentially due to the introduction of cross-sectional discontinuities: vortex formation and shedding during the fluid ejection from the channels and development of an entrance flow during the suction phase, when the fluid enters the channels from outside. It is the latter that is of particular interest in this study. Particle image velocimetry (PIV) is used to investigate the flow structures in the “entrance region”. Velocity profiles are measured as a function of phase angle within an oscillation period and the distance from the stack end into the channel. Using the data obtained, an “entrance length” defined by analogy with existing fluid mechanical definitions, is estimated. The experiments are supplemented by CFD calculations to improve the understanding of such entrance flows.  相似文献   

19.
In this paper we consider the steady flow of a viscous fluid through a channel bounded by two sinusoidally varying plates differing in phase by π and separated by a mean distance 2h. For the non-varying channel, the classical parabolic velocity profile for the fully developed flow is well known. An attempt here is made to analyze the flow in a generalized non-orthogonal coordinate system that renders the wavy channels as plane walls. Continuity equation and Navier-Stokes equations are presented in the generalized coordinate system and simplified through use of small perturbation under small Reynolds number approximation. Flow characteristics such as centerline velocity and drag force have been evaluated and discussed.  相似文献   

20.
The pressure driven, fully developed turbulent flow of incompressible viscous fluid (water) in 120° curved ducts of rectangular cross-section is investigated experimentally and numerically. Three different types of curved duct (A-CL, B-SL and C-IL) with continuously varying curvature conform to blade profile as the inner and outer curvature walls to simplify and guide the impeller design of pumps. After validating the numerical method against Particle Image Velocimetry (PIV) measurements, the flow development in the ducts is analyzed in detail by Computational Fluid Dynamics (CFD) for a wide range of Reynolds numbers (Re = 2.4 × 104–1.4 × 105) and aspect ratios (Ar > 1.0, =1.0 and <1.0). The results clearly depict the existence of multiple Dean vortices along the duct: while the axial velocity profile is more related to an inner Dean vortex (called split base vortex), the wall pressure is more influenced by the Dean vortex attached to the inner curvature wall (called ICW Dean vortex). The induced multiple Dean vortices and the secondary flow patterns in the duct cannot be faithfully predicted by using traditional techniques. Therefore, a new criterion based on the vortex core velocities is proposed. With this approach, the effects of Re, Cr and Ar on the Dean instabilities in curved ducts are carefully studied. Decreasing Re promotes the generation of Dean vortices closer to the duct inlet, a trend that is as opposed to laminar flow. In addition, a new pair of vortices called entrainment Dean vortex occurs near the outlet of the curved duct with Ar = 1.0, which has not been previously reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号