首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new hyperchaotic finance system which is constructed based on a chaotic finance system by adding an additional state variable is presented. The basic dynamical behaviors of this hyperchaotic finance system are investigated, such as the equilibrium, stability, hyperchaotic attractor, Lyapunov exponents, and bifurcation analysis. Furthermore, effective speed feedback controllers and linear feedback controllers are designed for stabilizing hyperchaos to unstable equilibrium points. Numerical simulations are given to illustrate and verify the results.  相似文献   

2.
This paper reports a new five-dimensional (5D) hyperchaotic system with three positive Lyapunov exponents, which is generated by adding a linear controller to the second equation of a 4D system that is obtained by coupling of a 1D linear system and a 3D modified generalized Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical behaviors. Of particular interest are the observations that the hyperchaotic system has a hyperchaotic attractor with three positive Lyapunov exponents under a unique equilibrium, three or infinite equilibria, and there are three types of coexisting attractors of this new 5D hyperchaotic system. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, Poincaré projections and power spectrum verifies the existence of the hyperchaotic and chaotic attractors. Moreover, stability of hyperbolic or non-hyperbolic equilibria and two complete mathematical characterization for 5D Hopf bifurcation are rigorously studied. Finally, some electronic circuits are designed to implement the 5D hyperchaotic system.  相似文献   

3.
This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincaré sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.  相似文献   

4.
In this paper, a new simple 4D smooth autonomous system is proposed, which illustrates two interesting rare phenomena: first, this system can generate a four-wing hyperchaotic and a four-wing chaotic attractor and second, this generation occurs under condition that the system has only one equilibrium point at the origin. The dynamic analysis approach in the paper involves time series, phase portraits, Lyapunov exponents, bifurcation diagram, and Poincaré maps, to investigate some basic dynamical behaviors of the proposed 4D system. The physical existence of the four-wing hyperchaotic attractor is verified by an electronic circuit. Finally, it is shown that the fractional-order form of the system can also generate a chaotic four-wing attractor.  相似文献   

5.
Li  Junhong  Wu  Huibin  Mei  Fengxiang 《Nonlinear dynamics》2017,90(4):2557-2569
Nonlinear Dynamics - This paper first formulates a new hyperchaotic system for particle motion and analyzes the equilibrium stability of the system and the hyperchaotic behaviors in the motion of...  相似文献   

6.
In this paper, a new fractional-order hyperchaotic system based on the Lorenz system is presented. The chaotic behaviors are validated by the positive Lyapunov exponents. Furthermore, the fractional Hopf bifurcation is investigated. It is found that the system admits Hopf bifurcations with varying fractional order and parameters, respectively. Under different bifurcation parameters, some conditions ensuring the Hopf bifurcations are proposed. Numerical simulations are given to illustrate and verify the results.  相似文献   

7.
四维超混沌系统Hopf分岔分析与反控制   总被引:1,自引:1,他引:0  
对超混沌系统进行分岔反控制的研究已成为当前一个重要研究方向,常采用线性控制器实现反控制。首先,对一个四维超混沌系统的Hopf分岔特性进行了分析,利用高维分岔理论推导出分岔特性与参数之间的关系式,以此判断系统的分岔类型。然后,设计一个由线性与非线性组合成的混合控制器对系统进行分岔反控制,控制参数取值不同时,系统会呈现出不同的分岔特性。通过分析得出,调控线性控制器参数可以使系统Hopf分岔提前或延迟发生;同时,调控混合控制器的两个控制参数,可以改变系统Hopf分岔特性,实现分岔反控制。  相似文献   

8.
In this paper, the dynamical behaviors of a perturbed hyperchaotic system is studied. The fast subsystem is examined using local stability and bifurcations, including simple bifurcation, Hopf bifurcation, and fold bifurcation of limit cycle. The results of these analysis are applied to the perturbed hyperchaotic system, where two types of periodic bursting, i.e., symmetric subHopf/fold-cycle bursting and subHopf/fold-cycle bursting, can be observed. In particular, the symmetric subHopf/fold-cycle bursting is new and has not been reported in previous work. With variation of the parameter, subHopf/fold-cycle bursting with symmetric structure may bifurcate into two coexisted subHopf/fold-cycle bursting symmetric to each other. Moreover, 3-torus and quasi-periodic bursting (2-torus) are presented. The relation among 3-torus, quasi-periodic bursting, and symmetric subHopf/fold-cycle bursting is discussed, which suggests that 3-torus may develop to quasi-periodic bursting, while quasi-periodic bursting may further evolve to symmetric subHopf/fold-cycle bursting.  相似文献   

9.
This paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions is derived which guarantees the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

10.
This paper discusses the complex dynamics of a new four-dimensional continuous-time autonomous hyperchaotic Lorenz-type system. The local dynamics, such as the stability, pitchfork bifurcation, and Hopf bifurcation at equilibria of this hyperchaotic system are analyzed by using the parameter-dependent center manifold theory and the normal form theory. The existence of homoclinic and heteroclinic orbits of this hyperchaotic system is further rigorously studied. More exactly, under some special parameter conditions, the fact that this hyperchaotic system has no homoclinic orbit but has two and only two heteroclinic orbits are proved.  相似文献   

11.
In the neural system, action potentials play a crucial role in many mechanisms of information communication. The quiescent state, spiking and bursting activities are important biological behaviors with the different neurocomputational properties. In this paper, based on the bifurcation mechanisms involved in the generation of action potentials, an interesting mathematical study of bursting behavior is obtained. The transition between the bursting and quiescence state is investigated,which shows that the time delay must be large enough for bursting behavior to occur in a delayed system. Two types of the codimension-two bifurcation, i.e., Bogdanov–Takens (BT) bifurcation and saddle-node homoclinic (SNH) bifurcation are investigated also. The bifurcation curves of the parameters and the phase portraits for the different regions are shown. The local existence of the homoclinic curve is achieved by using the center manifold reduction and normal form method. For occurrence of a periodic stimulation in the neighborhood of the SNH bifurcation, the system can switch over from an equilibrium state to an oscillatory state either through saddle-node on an invariant circle bifurcation (called circle bifurcation for simplicity) or saddle-node (SN) bifurcation, and back from the oscillatory state to the equilibrium state through the circle or homoclinic bifurcation. Complex bursting phenomena are displayed for the different values of delay couplings and stimulation intensities. Some types of bursting behaviors, such as Circle/Circle (Type II or parabolic bursting), Circle/Homoclinic, SN/Circle (triangular bursting), SN/Homoclinic (Type I or square-wave bursting), and Fold/Hopf bursting are obtained in the firing area. The results show that the different burstings are related to the delay coupling and external inputs.  相似文献   

12.
Projective synchronization of new hyperchaotic Newton–Leipnik system with fully unknown parameters is investigated in this paper. Based on Lyapunov stability theory, a new adaptive controller with parameter update law is designed to projective synchronize between two hyperchaotic systems asymptotically and globally. Basic bifurcation analysis of the new system is investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. It is found that the new hyperchaotic system possesses two positive Lyapunov exponents within a wide range of parameters. Numerical simulations on the hyperchaotic Newton–Leipnik system are used to verify the theoretical results.  相似文献   

13.
A new procedure for analyzing the stochastic Hopf bifurcation of quasi-non-integrable-Hamiltonian systems is proposed. A quasi-non-integrable-Hamiltonian system is first reduced to an one-dimensional Itô stochastic differential equation for the averaged Hamiltonian by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Then the relationship between the qualitative behavior of the stationary probability density of the averaged Hamiltonian and the sample behaviors of the one-dimensional diffusion process of the averaged Hamiltonian near the two boundaries is established. Thus, the stochastic Hopf bifurcation of the original system is determined approximately by examining the sample behaviors of the averaged Hamiltonian near the two boundaries. Two examples are given to illustrate and test the proposed procedure.  相似文献   

14.
In this research work a novel 4-D memristive system is presented. The proposed system belongs to the category of dynamical systems with hidden attractors as it displays a line of equilibrium points. Also, it has an hyperchaotic dynamical behavior in a particular range of its parameters space. System’s behavior is investigated through numerical simulations, by using well-known tools of nonlinear theory, such as phase portrait, bifurcation diagram, Lyapunov exponents and Poincaré map. Next, the case of chaos control of the system with unknown parameters using adaptive control method is investigated. Finally, an electronic circuit realization of the novel hyperchaotic system using Spice is presented in detail to confirm the feasibility of the theoretical model.  相似文献   

15.
Hongwei Li 《Nonlinear dynamics》2012,70(2):1327-1334
Inspirited by Li and Jin (Nonlinear Dyn. 67:2857?C2864 2012), this paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions are derived, which guarantee the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

16.
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged It? stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.  相似文献   

17.
This paper analyzes the hyperchaotic behaviors of the newly presented simplified Lorenz system by using a sinusoidal parameter variation and hyperchaos control of the forced system via feedback. Through dynamic simulations which include phase portraits, Lyapunov exponents, bifurcation diagrams, and Poincaré sections, we find the sinusoidal forcing not only suppresses chaotic behaviors, but also generates hyperchaos. The forced system also exhibits some typical bifurcations such as the pitchfork, period-doubling, and tangent bifurcations. Interestingly, three-attractor coexisting phenomenon happens at some specific parameter values. Furthermore, a feedback controller is designed for stabilizing the hyperchaos to periodic orbits, which is useful for engineering applications.  相似文献   

18.
Memristor-based chaotic and hyperchaotic systems are of great interest in the recent years, and addition of meminductor and memcapacitors to the family has widened the applications. In this paper, we propose a new chaotic system with fractional-order memristor and memcapacitor components. Nonlinear chaotic properties of the proposed system are investigated with equilibrium points, eigenvalues, Lyapunov exponents, bifurcation and bicoherence plots. We show that a small model disturbance can make the system to show self-excited and hidden attractors. We use the Adomian Decomposition method for implementing the proposed system in Field Programmable Gate Arrays.  相似文献   

19.
Little seems to be known about the homoclinic orbits of hyperchaotic system. Through the deep researches of a 4D Lorenz-type hyperchaotic system, with the help of Fishing Principle, we obtain the existence conditions of homoclinic orbits of this hyperchaotic system. In order to justify the theoretical analysis, by using the numerical methods, a set of approximate bifurcation parameters and its corresponding homoclinic orbits are obtained.  相似文献   

20.
In this paper we numerically investigate the fractional-order sliding-mode control for a novel fractional-order hyperchaotic system. Firstly, the dynamic analysis approaches of the hyperchaotic system involving phase portraits, Lyapunov exponents, bifurcation diagram, Lyapunov dimension, and Poincaré maps are investigated. Then the fractional-order generalizations of the chaotic and hyperchaotic systems are studied briefly. The minimum orders we found for chaos and hyperchaos to exist in such systems are 2.89 and 3.66, respectively. Finally, the fractional-order sliding-mode controller is designed to control the fractional-order hyperchaotic system. Numerical experimental examples are shown to verify the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号