首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shape memory and pseudoelastic effects are thermomechanical phenomena associated with martensitic phase transformations, presented by shape memory alloys. This contribution concerns with the dynamical response of coupled shape memory oscillators. Equations of motion are formulated by assuming a polynomial constitutive model to describe the restitution force of the oscillators and, since they are associated with a five-dimensional system, the analysis is performed by splitting the state space in subspaces. Free and forced vibrations are analyzed showing different kinds of responses. Periodic, quasi-periodic, chaos and hyperchaos are all possible in this system. Numerical investigations show interesting and complex behaviors. Dynamical jumps in free vibration and amplitude variation when temperature characteristics are changed are some examples. This article also shown some characteristics related to chaos–hyperchaos transition.  相似文献   

2.
Kemajou  I.  Nana  B.  Woafo  P. 《Nonlinear dynamics》2022,110(1):237-255

We study bifurcations and the chaotic behavior of a periodically forced electromechanical sieve. The dynamical behavior of the system is analyzed when supplied with the sinusoidal and square voltage sources. Analytical calculations and numerical simulations are also carried out for this electromechanical system and the results obtained are shown in terms of frequency–response diagrams, time–displacement diagrams, and phase portraits. Depending on the system parameters the analytical calculations and the numerical simulations exhibit regions of periodic and chaotic behaviors. For experimental validation, a small electromechanical sieve has been designed and realized. Amplitude jumps, hysteresis, and multistability are also observed. Good agreements are found between our theoretical results and experimental ones.

  相似文献   

3.
Ji  J. C. 《Nonlinear dynamics》2001,25(4):369-382
It is well known that saddle-node bifurcations can occur in the steady-state response of a forced single-degree-of-freedom (SDOF) nonlinear system in the cases of primary and superharmonic resonances. This discontinuous or catastrophic bifurcation can lead to jump and hysteresis phenomena, where at a certain interval of the control parameter, two stable attractors exist with an unstable one in between. A feedback control law is designed to control the saddle-node bifurcations taking place in the resonance response, thus removing or delaying the occurrence of jump and hysteresis phenomena. The structure of candidate feedback control law is determined by analyzing the eigenvalues of the modulation equations. It is shown that three types of feedback – linear, nonlinear, and a combination of linear and nonlinear – are adequate for the bifurcation control. Finally, numerical simulations are performed to verify the effectiveness of the proposed feedback control.  相似文献   

4.
In this paper, a new hyperchaotic finance system which is constructed based on a chaotic finance system by adding an additional state variable is presented. The basic dynamical behaviors of this hyperchaotic finance system are investigated, such as the equilibrium, stability, hyperchaotic attractor, Lyapunov exponents, and bifurcation analysis. Furthermore, effective speed feedback controllers and linear feedback controllers are designed for stabilizing hyperchaos to unstable equilibrium points. Numerical simulations are given to illustrate and verify the results.  相似文献   

5.
We consider a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small time constant, so that the feedback control system can be approximated by a periodically forced oscillator. It was previously shown by Melnikov's method that transverse homoclinic and heteroclinic orbits exist and chaos may occur in certain parameter regions. Here we study local bifurcations of harmonics and subharmonics using the second-order averaging method and Melnikov's method. The Melnikov analysis was performed by numerically computing the Melnikov functions. Numerical simulations and experimental measurements are also given and are compared with the previous and present theoretical predictions. Sustained chaotic motions which result from homoclinic and heteroclinic tangles for not only single but also multiple hyperbolic periodic orbits are observed. Fairly good agreement is found between numerical simulation and experimental results.  相似文献   

6.
The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.  相似文献   

7.
This paper focuses on thoroughly exploring the finite-time transient behaviors occurring in a periodically driven non-smooth dynamical system. Prior to settling down into a long-term behavior, such as a periodic forced oscillation, or a chaotic attractor, responses may exhibit a variety of transient behaviors involving regular dynamics, co-existing attractors, and super-persistent chaotic transients. A simple and fundamental impacting mechanical system is used to demonstrate generic transient behavior in an experimental setting for a single degree of freedom non-smooth mechanical oscillator. Specifically, we consider a horizontally driven rigid-arm pendulum system that impacts an inclined rigid barrier. The forcing frequency of the horizontal oscillations is used as a bifurcation parameter. An important feature of this study is the systematic generation of generic experimental initial conditions, allowing a more thorough investigation of basins of attraction when multiple attractors are present. This approach also yields a perspective on some sensitive features associated with grazing bifurcations. In particular, super-persistent chaotic transients lasting much longer than the conventional settling time (associated with linear viscous damping) are characterized and distinguished from regular dynamics for the first time in an experimental mechanical system.  相似文献   

8.
This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.  相似文献   

9.
This paper considers the dynamic response of coupled, forced and lightly damped nonlinear oscillators with two degree-of-freedom. For these systems, backbone curves define the resonant peaks in the frequency–displacement plane and give valuable information on the prediction of the frequency response of the system. Previously, it has been shown that bifurcations can occur in the backbone curves. In this paper, we present an analytical method enabling the identification of the conditions under which such bifurcations occur. The method, based on second-order nonlinear normal forms, is also able to provide information on the nature of the bifurcations and how they affect the characteristics of the response. This approach is applied to a two-degree-of-freedom mass, spring, damper system with cubic hardening springs. We use the second-order normal form method to transform the system coordinates and identify which parameter values will lead to resonant interactions and bifurcations of the backbone curves. Furthermore, the relationship between the backbone curves and the complex dynamics of the forced system is shown.  相似文献   

10.
This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincaré sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.  相似文献   

11.
This paper studies a small Hopfield neural network with a memristive synaptic weight. We show that the previous stable network after one weight replaced by a memristor can exhibit rich complex dynamics, such as quasi-periodic orbits, chaos, and hyperchaos, which suggests that the memristor is crucial to the behaviors of neural networks and may play a significant role. We also prove the existence of a saddle periodic orbit, and then present computer-assisted verification of hyperchaos through a homoclinic intersection of the stable and unstable manifolds, which gives a positive answer to an interesting question that whether a 4D memristive system with a line of equilibria can demonstrate hyperchaos.  相似文献   

12.
We study bifurcations and chaotic behavior of a periodically forced lever that is magnetically controlled. The system is extremely simple and low cost and can be assembled in a very short time. Both the theoretical simulations and the experimental measurements exhibit regions of periodic and chaotic behaviors, depending on the system parameters. Amplitude jumps, hysteresis and bistable states are also observed. The wide possibilities of varying the system parameters make the experiments suitable for demonstrations. Good agreements are found between our theoretical results and experimental ones.  相似文献   

13.
In the paper, the dynamical behaviors of a new fractional order hyperchaotic Rabinovich system are investigated, which include its local stability, hyperchaos, chaotic control and synchronization. Firstly, a new fractional order hyperchaotic Rabinovich system with Caputo derivative is proposed. Then, the hyperchaotic attractors of the commensurate and incommensurate fractional order hyperchaotic Rabinovich system are found. After that, four linear feedback controllers are designed to stabilize this fractional order system Finally, by using the active control method the synchronization is studied between the fractional order hyperchaotic and chaos controlled Rabinovich system In addition, the theoretical predictions are confirmed by numerical simulations.  相似文献   

14.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

15.
The unfolding due to imperfections of a gluing bifurcation occurring in a periodically forced Taylor–Couette system is analyzed numerically. In the absence of imperfections, a temporal glide-reflection Z2 symmetry exists, and two global bifurcations occur within a small region of parameter space: a heteroclinic bifurcation between two saddle two-tori and a gluing bifurcation of three-tori. As the imperfection parameter increase, these two global bifurcations collide, and all the global bifurcations become local (fold and Hopf bifurcations). This severely restricts the range of validity of the theoretical picture in the neighborhood of the gluing bifurcation considered, and has significant implications for the interpretation of experimental results. PACS 47.20.Ky, 47.20.Lz, 47.20.Ft  相似文献   

16.
曲子芳  张正娣  彭淼  毕勤胜 《力学学报》2018,50(5):1145-1155
旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制. 以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构, 却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟, 对结果进行了验证.   相似文献   

17.
Derived from Sine map and an iterative chaotic map with infinite collapse (ICMIC), a new high-dimensional hyperchaotic map, sinusoidal feedback Sine ICMIC modulation map (SF-SIMM), is proposed. Two-dimensional (2D) model of SF-SIMM is investigated as an example, and its chaotic performances are evaluated. Results show that it has complicated phase space trajectory, infinite equilibrium points, hyperchaotic behaviors, rather large maximum Lyapunov exponent, three typical bifurcations and multiple coexisting attractors with odd symmetry. Furthermore, it has advantages in complexity, distribution characteristics and zero correlation and can generate two independent pseudo-random sequences simultaneously. Therefore, it has good application prospects in secure communication.  相似文献   

18.
A forced vibration system with dual bodies and an endstop is considered in this paper. A large energy loss is considered as one of the mass blocks of the system hits the endstop, and the impact associated with the large energy loss is first assumed to be completely plastic. The plastic impact may bring about the occurrence of the sticking phase, which is equivalent to a change in the structure of the forced vibration system at a certain stage after the impact. The incidence relation between dynamical characteristics and model parameters is studied through the multi-target and multi-parameter collaborative simulation analysis for determining the reasonable matching range of parameters. Pattern types, occurrence regions, distribution regularities and bifurcation characteristics of periodic and subharmonic impact vibrations are presented on a series of parameter planes. The key features of Poincaré mapping, associated with the plastic impacts, are primarily manifested in piecewise continuity caused by sliding bifurcation and grazing discontinuity induced by grazing bifurcation. Integrative effects of these two nonstandard bifurcations can bring about some abnormal transitions to occur. The large dissipation case associated with small collision recovery coefficient is briefly analyzed, and the induced mechanism of chatter-sticking motion and the incidence relation between the sticking characteristics and the restitution coefficient R are discussed. The nonstandard dynamic characteristics associated with the plastic impacts are further demonstrated by dynamic mechanical behaviors of two practical impact machines applied in engineering.  相似文献   

19.
The feedback control problem of designing Hopf?CHopf interaction bifurcations into a dry friction system at a pre-specified parameter point is addressed. A new bifurcation criterion without using eigenvalues is established to preferably determine the control gains. Numerical simulation shows that the torus solution of Hopf?CHopf interaction bifurcation can be created in the friction system at a desired parameter location.  相似文献   

20.
The global bifurcations in mode of a nonlinear forced dynamics of suspended cables are investigated with the case of the 1:1 internal resonance. After determining the equations of motion in a suitable form, the energy phase method proposed by Haller and Wiggins is employed to show the existence of the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the two cases of Hamiltonian and dissipative perturbation. Furthermore, some complex chaos behaviors are revealed for this class of systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号