首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An embedded formulation for the simulation of immiscible multi‐fluid problems is proposed. The method is particularly designed for handling gas–liquid systems. Gas and liquid are modeled using the Eulerian and the Lagrangian formulation, respectively. The Lagrangian domain (liquid) moves on top of the fixed Eulerian mesh. The location of the material interface is exactly defined by the position of the boundary mesh of the Lagrangian domain. The individual fluid problems are solved in a partitioned fashion and are coupled using a Dirichlet–Neumann algorithm. Representation of the pressure discontinuity across the interface does not require any additional techniques being an intrinsic feature of the method. The proposed formulation is validated, and its potential applications are shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
对于大部分非协调板单元,使用规则网格能得到很好的效果。但是,当网格不规则时,非协调元的数值特性将变得很差,甚至收敛性得不到保证。为解决网格依赖性问题,许多专家学者提出了改造单元,如拟协调元法和广义协调元法,这些方法能解决收敛性问题,但是数值实践证明没有一种单元能在所有情况下都具有良好的数值特性。考虑到流形方法采用两套完全独立的覆盖系统,可以用规则的数学网格来作为数学覆盖进行插值,取得最佳的插值效果,单元收敛性便能得到保证。再结合适用于流形方法的变分提法,建立起流形方法处理非规则物理边界非协调板单元的一般格式。以ACM 薄板单元为例,与ANSYS、拟协调元法和广义协调元法进行了对比,证明本文方法在处理具有曲线边界的薄板弯曲问题时具有收敛快和精度高等优势。  相似文献   

3.
Two different techniques to analyze non‐Newtonian viscous flow in complex geometries with internal moving parts and narrow gaps are compared. The first technique is a non‐conforming mesh refinement approach based on the fictitious domain method (FDM), and the second one is the extended finite element method (XFEM). The refinement technique uses one fixed reference mesh, and to impose continuity across non‐conforming regions, constraints using Lagrangian multipliers are used. The size of elements locally in the high shear rate regions is reduced to increase accuracy. FDM is shown to have limitations; therefore, XFEM is applied to decouple the fluid from the internal moving rigid bodies. In XFEM, the discontinuous field variables are captured by using virtual degrees of freedom that serve as enrichment and by applying special integration over the intersected elements. The accuracy of the two methods is demonstrated by direct comparison with results of a boundary‐fitted mesh applied to a two‐dimensional cross section of a twin‐screw extruder. Compared with non‐conforming FDM, XFEM shows a considerable improvement in accuracy around the rigid body, especially in the narrow gap regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, an approach for performing mesh adaptation in the numerical simulation of two‐dimensional unsteady flow with moving immersed boundaries is presented. In each adaptation period, the mesh is refined in the regions where the solution evolves or the moving bodies pass and is unrefined in the regions where the phenomena or the bodies deviate. The flow field and the fluid–solid interface are recomputed on the adapted mesh. The adaptation indicator is defined according to the magnitude of the vorticity in the flow field. There is no lag between the adapted mesh and the computed solution, and the adaptation frequency can be controlled to reduce the errors due to the solution transferring between the old mesh and the new one. The preservation of conservation property is mandatory in long‐time scale simulations, so a P1‐conservative interpolation is used in the solution transferring. A nonboundary‐conforming method is employed to solve the flow equations. Therefore, the moving‐boundary flows can be simulated on a fixed mesh, and there is no need to update the mesh at each time step to follow the motion or the deformation of the solid boundary. To validate the present mesh adaptation method, we have simulated several unsteady flows over a circular cylinder stationary or with forced oscillation, a single self‐propelled swimming fish, and two fish swimming in the same or different directions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A new procedure for modeling the conjugate heat‐transfer process between fluid and structure subdomains is presented. The procedure relies on higher‐order combined interface boundary conditions (CIBC) for improved accuracy and stability. Traditionally, continuity of temperature and heat flux along interfaces is satisfied through algebraic jump conditions in a staggered fashion. More specifically, Dirichlet temperature conditions are usually imposed on the fluid side and Neumann heat‐flux conditions are imposed on the solid side for the stability of conventional sequential staggered procedure. In this type of treatment, the interface introduces additional stability constraints to the coupled thermal simulations. By utilizing the CIBC technique on the Dirichlet boundary conditions, a staggered procedure can be constructed with the same order of accuracy and stability as those of standalone computations. Using the Godunov–Ryabenkii normal‐mode analysis, a range of values of the coupling parameter is found that yields a stable and accurate interface discretization. The effectiveness of the method is investigated by presenting and discussing performance evaluation data using a 1D finite‐difference formulation for each subdomain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The Lagrangian approach is usually used for the simulation of flow with strong shock waves. Moreover, this approach is particularly well suited to treatment of material interfaces in the case of multimaterial flows.Unfortunately, this formulation leads to very large deformations in the mesh. The arbitrary Lagrangian‐Eulerian method overcomes this drawback by using a mesh regularization that is based on an analysis of cell geometry. The regularization step may be considered as a method used to correct the nonconvex and potentially tangled cells that constitute the mesh. In this paper, we present a new approach to mesh regularization. Instead of using a purely geometric criterion, we propose that the mesh evolution is computed on the basis of the flow vorticity. This approach is called the large Eddy limitation method, and it is aimed here to be used in finite volume direct arbitrary Lagrangian‐Eulerian methods. The large Eddy limitation method is general, which means that it is not restricted to applications in the finite volume framework dedicated to fluid flow simulation; for instance, it could also be naturally applied to the finite element framework.  相似文献   

7.
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed.  相似文献   

8.
A ghost fluid Lattice Boltzmann method (GF‐LBM) is developed in this study to represent complex boundaries in Lattice Boltzmann simulations of fluid flows. Velocity and density values at the ghost points are extrapolated from the fluid interior and domain boundary via obtaining image points along the boundary normal inside the fluid domain. A general bilinear interpolation algorithm is used to obtain values at image points which are then extrapolated to ghost nodes thus satisfying hydrodynamic boundary conditions. The method ensures no‐penetration and no‐slip conditions at the boundaries. Equilibrium distribution functions at the ghost points are computed using the extrapolated values of the hydrodynamic variables, while non‐equilibrium distribution functions are extrapolated from the interior nodes. The method developed is general, and is capable of prescribing Dirichlet as well as Neumann boundary conditions for pressure and velocity. Consistency and second‐order accuracy of the method are established by running three test problems including cylindrical Couette flow, flow between eccentric rotating cylinders and flow over a cylinder in a confined channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical method is developed for modelling the interactions between incompressible viscous fluid and moving boundaries. The principle of this method is introducing the immersed‐boundary concept in the framework of the lattice Boltzmann method, and improving the accuracy and efficiency of the simulation by refining the mesh near moving boundaries. Besides elastic boundary with a constitutive law, the method can also efficiently simulate solid moving‐boundary interacting with fluid by employing the direct forcing technique. The method is validated by the simulations of flow past a circular cylinder, two cylinders moving with respect to each other and flow around a hovering wing. The versatility of the method is demonstrated by the numerical studies including elastic filament flapping in the wake of a cylinder and fish‐like bodies swimming in quiescent fluid. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new immersed‐boundary method for simulating flows over complex immersed, moving boundaries is presented. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The present method is based on a finite‐difference approach on a staggered mesh together with a fractional‐step method. It must be noted that the immersed boundary is generally not coincident with the position of the solution variables on the grid, therefore, an appropriate strategy is needed to construct a relationship between the curved boundary and the grid points nearby. Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy the no‐slip boundary condition. The immersed boundary is represented by a series of interfacial markers, and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This treatment of the immersed‐boundary is used to simulate several problems, which have been validated with previous experimental results in the open literature, verifying the accuracy of the present method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Embedded boundary methods for CFD (computational fluid dynamics) simplify a number of issues. These range from meshing the fluid domain, to designing and implementing Eulerian‐based algorithms for fluid–structure applications featuring large structural motions and/or deformations. Unfortunately, embedded boundary methods also complicate other issues such as the treatment of the wall boundary conditions in general, and fluid–structure transmission conditions in particular. This paper focuses on this aspect of the problem in the context of compressible flows, the finite volume method for the fluid, and the finite element method for the structure. First, it presents a numerical method for treating simultaneously the fluid pressure and velocity conditions on static and dynamic embedded interfaces. This method is based on the exact solution of local, one‐dimensional, fluid–structure Riemann problems. Next, it describes two consistent and conservative approaches for computing the flow‐induced loads on rigid and flexible embedded structures. The first approach reconstructs the interfaces within the CFD solver. The second one represents them as zero level sets, and works instead with surrogate fluid/structure interfaces. For example, the surrogate interfaces obtained simply by joining contiguous segments of the boundary surfaces of the fluid control volumes that are the closest to the zero level sets are explored in this work. All numerical algorithms presented in this paper are applicable with any embedding CFD mesh, whether it is structured or unstructured. Their performance is illustrated by their application to the solution of three‐dimensional fluid–structure interaction problems associated with the fields of aeronautics and underwater implosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a moving mesh BGK scheme (MMBGK) for multi‐material flow computations is proposed. The basic idea of constructing the MMBGK is to couple the Lagrangian method, which tracks material interfaces and keeps the interfaces sharp, with a remapping‐free ALE‐type kinetic method within each single material region, where the kinetic method is based on the BGK (Bhatnagar–Gross–Krook) model. Within each single material region, a numerical flux formulation is developed on moving meshes from motion of microscope particles, and the mesh velocity is determined by requiring both mesh adaptation for accuracy and robustness, such that the grids are moving towards to the regions with high flow gradients in a way of diffusive mechanism (velocity) to adjust the distances between neighboring cells, thus increasing the numerical accuracy. To keep the sharpness of material interfaces, the Lagrangian velocity and flux are constructed at the interfaces only. Consequently, a BGK‐scheme‐based ALE‐type method (i.e., the MMBGK scheme) for multi‐material flows is constructed. Numerical examples in one and two dimensions are presented to illustrate the accuracy and robustness of the MMBGK scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
   Abstract. This paper presents the results obtained by a generalized cut cells strategy on 3-D blast waves problems. The mesh is cartesian except when it is intersected by the surface of the solids inserted in the computational domain. The improvement, relatively to a classical cut-cells method, is the treatment of the cut which preserves the real geometry of the surface instead of approximating it by a plane. This approach avoids a loss of precision of the numerical scheme at the boundaries and allows future extension to higher order schemes (). Moreover it is useful for any kind of geometry with a high efficiency in computation time. The drawback is the complexity of the geometrical problems which can rise because of the diversity of situations in the treatment of the cuts. The performance of the approach is tested on a few examples allowing comparisons with experiments or other techniques and physical discussions. Received 15 November 1999 / Accepted 11 July 2000  相似文献   

17.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
屈新  郑宏  苏立君  李春光 《计算力学学报》2016,33(6):819-825,845
对于大部分非协调板单元,使用规则网格能得到很好的效果。但是,当网格不规则时,非协调元的数值特性将变得很差,甚至收敛性得不到保证。为解决网格依赖性问题,许多专家学者提出了改造单元,如拟协调元法和广义协调元法,这些方法能解决收敛性问题,但是数值实践证明没有一种单元能在所有情况下都具有良好的数值特性。考虑到流形方法采用两套完全独立的覆盖系统,可以用规则的数学网格来作为数学覆盖进行插值,取得最佳的插值效果,单元收敛性便能得到保证。再结合适用于流形方法的变分提法,建立起流形方法处理非规则物理边界非协调板单元的一般格式。以ACM薄板单元为例,与ANSYS、拟协调元法和广义协调元法进行了对比,证明本文方法在处理具有曲线边界的薄板弯曲问题时具有收敛快和精度高等优势。  相似文献   

20.
In a previous paper, the authors presented an elemental enriched space to be used in a finite‐element framework (EFEM) capable of reproducing kinks and jumps in an unknown function using a fixed mesh in which the jumps and kinks do not coincide with the interelement boundaries. In this previous publication, only scalar transport problems were solved (thermal problems). In the present work, these ideas are generalized to vectorial unknowns, in particular, the incompressible Navier‐Stokes equations for multifluid flows presenting internal moving interfaces. The advantage of the EFEM compared with global enrichment is the significant reduction in computing time when the internal interface is moving. In the EFEM, the matrix to be solved at each time step has not only the same amount of degrees of freedom (DOFs) but also the same connectivity between the DOFs. This frozen matrix graph enormously improves the efficiency of the solver. Another characteristic of the elemental enriched space presented here is that it allows a linear variation of the jump, thus improving the convergence rate, compared with other enriched spaces that have a constant variation of the jump. Furthermore, the implementation in any existing finite‐element code is extremely easy with the version presented here because the new shape functions are based on the usual finite‐element method shape functions for triangles or tetrahedrals, and once the internal DOFs are statically condensed, the resulting elements have exactly the same number of unknowns as the nonenriched finite elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号