首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Hall tensor emerges from the study of the Hall effect, an important magnetic effect observed in electric conductors and semiconductors. The Hall tensor is third-order and three-dimensional, whose first two indices are skew-symmetric. This paper investigates the isotropic polynomial invariants of the Hall tensor by connecting it with a second-order tensor via the third-order Levi-Civita tensor. A minimal isotropic integrity basis with 10 invariants for the Hall tensor is proposed. Furthermore, it is proved that this minimal integrity basis is also an irreducible isotropic function basis of the Hall tensor.  相似文献   

2.
3.
Integrity bases are derived for a symmetric second-order tensor and a vector for the transformation groups corresponding to each of the crystal classes. In each case the irreducibility of the integrity basis is proven.  相似文献   

4.
《力学快报》2022,12(5):100381
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled, but several essential issues remain that strongly affect the performance. Two problems are studied in the current research: (1) the processing of the Reynolds stress tensor and (2) the coupling method between the machine learning model and flow solver. For the Reynolds stress processing issue, we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress. Then, the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis. An adaptive regularization term is employed to enhance the representation performance. For the coupling issue, an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow. The results have high consistency with the direct numerical simulation true values, which proves the validity of the current approach.  相似文献   

5.
Assuming that the free energy depends on the deformation gradient and the spatial electric field, we derive the expressions for the Cauchy stress tensor and the spatial electric displacement from an observer invariant quadratic form of the free energy via the strict definitions of these quantities. Specific forms of the Piola-Kirchhoff stress tensor and the material electric displacement are then deduced and linearized in a particular sense. As an application of the resulting theory, we formulate the problem of an electrically driven disc within the context of the classical bending theory of thin plates. The material of the disc is assumed to have at most the symmetry of a hexagonal system of classC 6v.The resulting coupled differential equations for the axial mechanical displacement of the middle surface and the material electric potential indicate that the problem is not empty. This result is of particular interest in view of the fact that it is generally held that the classical theory of piezoelectricity does not permit such couplings to occur.  相似文献   

6.
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation. PACS 47.32.Fg; 47.85.Gj; 47.27.Eq  相似文献   

7.
Material tensors pertaining to polycrystalline aggregates should manifest also the influence of crystallographic texture on the material properties in question. In this paper we make use of tensors which form bases of irreducible representations of the rotation group and prove a representation theorem by which a given material tensor of a weakly-textured polycrystal is expressed as a linear combination of an orthonormal set of irreducible basis tensors, with the components given explicitly in terms of texture coefficients and a set of undetermined material parameters. Once the irreducible basis tensors that appear in the formula are determined, the representation formula, which is valid for all texture and crystal symmetries, will delineate quantitatively the effect of crystallographic texture on the material tensor in question. We present an integral formula and an orthonormalization process which serve as the basis for a procedure to determine explicitly the irreducible basis tensors required in the representation formula. For applications we determine a set of irreducible basis tensors for the elasticity tensor and a set for fourth-order tensors that define constitutive equations in incompressible elasticity and Hill’s quadratic yield functions in plasticity. We show that orientation averaging of a tensor can be done easily if we have in hand a set of irreducible basis tensors for the decomposition of the tensor in question. As illustration we derive a formula, which is valid for all texture and crystal symmetries, for the elasticity tensor under the Voigt model.  相似文献   

8.
Net-stress analysis in creep mechanics   总被引:2,自引:0,他引:2  
Summary In the paper a net-stress tensor is obtained by a linear transformation from Cauchy's stress tensor, i.e. a fourth-order (not total symmetric) tensor is introduced the components of which can be calculated by the components of an anisotropic creep-damage tensor of rank two.We have to distinguish between anisotropy corresponding to a forming process, for instance rolling, and anisotropic damage growth. Then, constitutive equations and anisotropic damage growth equations are given by symmetric second-order tensor-valued tensor functions in three argument tensors: the Cauchy stress tensor, the anisotropic creep-damage tensor of rank two, and a fourth-order constitutive tensor characterizing the anisotropy from, e.g., rolling.The central problem is to find an irreducible set of tensor generators involving the mentioned argument tensors and to construct an integrity basis associated with the representation of the tensor response function.In finding simplified constitutive equations for more practical use some examples are discussed.
Untersuchung zum Net-Stress Tensor in der Kriechmechanik
Übersicht Im Aufsatz wird ein Tensor vierter Stufe eingeführt, der als linearer Operator einen net-stress Tensor mit Cauchys Spannungstensor verknüpft. Die Koordinaten dieses Tensors vierter Stufe lassen sich aus den Koordinaten eines Kriechschadentensors zweiter Stufe ermitteln.Es wird zwischen anisotroper Schadensentwicklung und ursprünglich im Werkstoff vorhandener Anisotropie unterschieden, die beispielsweise durch die Herstellung (etwa Walzvorgang) bedingt ist. Bei der Aufstellung von Stoffgleichungen sind somit drei Argumenttensoren zu berücksichtigen: Cauchys Spannungstensor, Schadenstensor zweiter Stufe und Tensor der Anfangsanisotropie vierter Stufe.Das Hauptproblem besteht darin, nicht reduzierbare Tensorgeneratoren zu finden und eine Integritätsbasis zu konstruieren, die der Darstellung angepaßt ist.Für den praktischen Gebrauch werden vereinfachte Darstellungsmöglichkeiten besprochen.


This paper was presented at the Second Symposium on Inelastic Solids and Structures held in Bad Honnef in September 1981  相似文献   

9.
Consider an infinite thermally conductive medium characterized by Fourier’s law, in which a subdomain, called an inclusion, is subjected to a prescribed uniform heat flux-free temperature gradient. The second-order tensor field relating the gradient of the resulting temperature field over the medium to the uniform heat flux-free temperature gradient is referred to as Eshelby’s tensor field for conduction. The present work aims at deriving the general properties of Eshelby’s tensor field for conduction. It is found that: (i) the trace of Eshelby’s tensor field is equal to the characteristic function of the inclusion, independently of the latter’s shape; (ii) the isotropic part of Eshelby’s tensor field over the inclusion of arbitrary shape is identical to Eshelby’s tensor field over a 2D circular or 3D spherical inclusion; (iii) when the medium is made of an isotropic material and when the inclusion has some specific rotational symmetries, the value of the Eshelby’s tensor field evaluated at the inclusion gravity center and the symmetric average of Eshelby’s tensor fields are both equal to Eshelby’s tensor field for a 2D circular or 3D spherical inclusion. These results are then extended, with the help of a linear transformation, to the general case where the medium consists of an anisotropic conductive material. The method elaborated and results obtained by the present work are directly transposable to the physically analogous transport phenomena of electric conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically identical phenomenon of anti-plane elasticity.  相似文献   

10.
I. INTRODUCTION Di?erent from piezoelectricity which is a linear coupling between mechanical and electric ?elds andcan only exist in anisotropic materials[1], electrostriction refers to the quadratic dependence of strainor stress on electric ?elds[2,3] …  相似文献   

11.
In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks. The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helrnhotlz free energy of piezoelectric mate- rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the tensorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helrnhotlz free energy of the piezoelectric material, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With the Kirchhoff hypothesis of plate, the free vibration equations of the piezoelectric rectangular plate considering damage is established. By using Galerkin method, the equations are solved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.  相似文献   

12.
The theory of small elastoplastic strains of dielectrics in the presence of an electric field is developed in the work. An expression is obtained for the electric part of the stress tensor. Total free energy minimum theorems with constant temperature and simple proportional loading and unloading theorems are proved. Experiments to calculate the mass functions are discussed.  相似文献   

13.
Isotropic invariants of the elasticity tensor always yield the same values no matter what coordinate system is concerned and therefore they characterize the linear elasticity of a solid material intrinsically. There exists a finite set of invariants of the elasticity tensor such that each invariant of the elasticity tensor can be expressed as a single-valued function of this set. Such a set, called a basis of invariants of the elasticity tensor, can be used to realize a parametrization of the manifold of orbits of elastic moduli, i.e. to distinguish different kinds of linear elastic materials. Seeking such a basis is an old problem in theory of invariants and seems to have been unsuccessful until now. In this paper, by means of the unique spectral decomposition of the elasticity tensor every invariant of the elasticity tensor is shown to be a joint invariant of the eigenprojections of the elasticity tensor, and then by utilizing some properties of the eigenprojections a basis for each case concerning the multiplicity of the eigenvalues of the elasticity tensor is presented in terms of joint invariants of the eigenprojections. In addition to the foregoing properties, the presented invariants may also be used to form invariant criteria for identification of elastic symmetry axes.  相似文献   

14.
A solution for the overall electromechanical response of two-phase dielectric elastomer composites with (random or periodic) particulate microstructures is derived in the classical limit of small deformations and moderate electric fields. In this limit, the overall electromechanical response is characterized by three effective tensors: a fourth-order tensor describing the elasticity of the material, a second-order tensor describing its permittivity, and a fourth-order tensor describing its electrostrictive response. Closed-form formulas are derived for these effective tensors directly in terms of the corresponding tensors describing the electromechanical response of the underlying matrix and the particles, and the one- and two-point correlation functions describing the microstructure. This is accomplished by specializing a new iterative homogenization theory in finite electroelastostatics (Lopez-Pamies, 2014) to the case of elastic dielectrics with even coupling between the mechanical and electric fields and, subsequently, carrying out the pertinent asymptotic analysis.Additionally, with the aim of gaining physical insight into the proposed solution and shedding light on recently reported experiments, specific results are examined and compared with an available analytical solution and with new full-field simulations for the special case of dielectric elastomers filled with isotropic distributions of spherical particles with various elastic dielectric properties, including stiff high-permittivity particles, liquid-like high-permittivity particles, and vacuous pores.  相似文献   

15.
Conservation laws derived from the energy–momentum tensor are employed to establish under suitable sufficient conditions uniqueness in affine boundary value problems for the homogeneous nonlinear elastic dielectric on the whole space and on certain cone-like regions. In particular, the electric enthalpy is assumed to be strictly quasi-convex for the whole space, and strictly rank-one convex for cone-like regions. Asymptotic behaviour is also stipulated. Uniqueness results for corresponding affine boundary value problems of homogeneous nonlinear elastostatics are a special case of those derived here.  相似文献   

16.
In this paper we propose a phenomenological theory for electrorheological fluids. In general these are suspensions which undergo dramatic changes in their material properties if they are exposed to an electric field. In the context of continuum mechanics these fluids can be modeled as non-Newtonian fluids. Recalling the governing equations of rational thermodynamics and electrodynamics of moving media (Maxwell-Minkowski-equations), we derive suitable governing equations of electrorheology using essentially two assumptions concerning magnetic quantities. Furthermore we introduce a 3-dimensional nonlinear constitutive equation for the Cauchy stress tensor which is an extension of the model proposed by Ružička (see [14]). Assuming a viscometric flow, we compare the shear stress of our model with other well known models and fit the parameters by using measurements that were obtained in a rotational viscometer. Excellent agreement between model and measurements is achieved. On the basis of these results we propose a 3-dimensional model, the so-called extended Casson -model. This model is investigated further for a channel flow configuration with a homogeneous electric field. We determine analytical solutions for the electric field, the velocity and the volumetric flow rate and illustrate the velocity profiles and the predicted pressure drop. The velocity profiles are flattened compared to parabolic profiles and become more flat if the electric field increases. Received March 21, 2000  相似文献   

17.
The paper presents several results of structural fracture macromechanics used to study the integrity of continuum under impulse loading conditions. The dynamic problem on a semi-infinite steady-state crack of longitudinal shear is considered. Exact analytical expressions for the stress tensor and displacement vector components on the crack line are obtained. The values of the threshold displacement amplitude on the wave front are determined for several structural materials.  相似文献   

18.
A selection of models for the variation in porosity in dry granular flows is investigated and compared on the basis of thermodynamic consistency to illustrate their performance and limitations in equilibrium situations. To this end, the thermodynamic analysis, based on the Müller–Liu entropy principle, is employed to deduce the ultimate constitutive equations at equilibrium. Results show that while all the models deliver appropriate equilibrium expressions of the Cauchy stress tensor for compressible grains, the model in which the variation in porosity is treated kinematically yields a spherical stress tensor for incompressible grains. Only the model in which the variation in porosity is modeled by a dynamic equation can give rise to a non-spherical stress tensor at equilibrium. The present study illuminates the validity and thermodynamic justification of the two modeling approaches for the porosity variation in dry granular matter.  相似文献   

19.
This paper develops general invariant representations of the constitutive equations for isotropic nonlinearly elastic materials. Different sets of mutually orthogonal unit tensor bases are constructed from the strain argument tensor by using the representation theorem and corresponding irreducible invariants are defined. Their relations and geometrical interpretations are established in three dimensional principal space. It is shown that the constitutive law linking the stress and strain tensors is revealed to be a simple relationship between two vectors in the principal space. Relative to two different sets of the basis tensors, the constitutive equations are transformed according to the transformation rule of vectors. When a potential function is assumed to exist, the vector associated with the stress tensor is expressed in terms of its gradient with respect to the vector associated with the strain tensor. The Hill’s stability condition is shown to be that the scalar product of the increment of those two vectors must be positive. When potential function exists, it becomes to be that the 3 × 3 constitutive matrix derived from its second order derivative with respect to the vector associated with the strain must be positive definite. By decomposing the second order symmetric tensor space into the direct sum of a coaxial tensor subspace and another one orthogonal to it, the closed form representations for the fourth order tangent operator and its inversion are derived in an extremely simple way.  相似文献   

20.
We propose a model to explore the competition between two mechanisms possibly at work in a nematic liquid crystal confined within a flat cell with strong uniaxial planar conditions on the bounding plates and subject to an external field. To obtain an electric field perpendicular to the plates, a voltage is imposed across the cell; no further assumption is made on the electric potential within the cell, which is therefore calculated together with the nematic texture. The Landau-de Gennes theory of liquid crystals is used to derive the equilibrium nematic order tensor Q. When the voltage applied is low enough, the equilibrium texture is nearly homogeneous. Above a critical voltage, there exist two different possibilities for adjusting the order tensor to the applied field within the cell: plain director reorientation, i.e., the classical Freedericksz transition, and order reconstruction. The former mechanism entails the rotation of the eigenvectors of Q and can be described essentially by the orientation of the ordinary uniaxial nematic director, whilst the latter mechanism implies a significant variation of the eigenvalues of Q within the cell, virtually without any rotation of its eigenvectors, but with the intervention of a wealth of biaxial states. Either mechanism can actually occur, which yields different nematic textures, depending on material parameters, temperature, cell thickness and the applied potential. The equilibrium phase diagram illustrating the prevailing mechanism is constructed for a significant set of parameters.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号