首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effect of creep prestrain on subsequent plastic deformation is experimentally investigated. The experiments are performed by subjecting thin-walled tubular specimens of stainless steel SUS 304 after creep prestraining to combined axial load and torsion at room temperature to 600°C. The stress-strain relations subsequent to creep prestrain are determined under combined stress state with and without temperature changes in prestraining and subsequent plastic straining. On the experimental results, the plastic hardening effects by creep prestrain are discussed under various temperature conditions. The subsequent stress-strain relations are compared with the calculated results on the equi-plastic strain surfaces.  相似文献   

2.
A technique is developed for determining the thermoviscoplastic state of shells of revolution with allowance for creep damage. The technique is based on the hypotheses of rectilinear element and the theory of deformation along paths of small curvature. The equivalent stress appearing in the kinetic equations of damage and creep is determined using a creep-rupture criterion that accounts for the stress mode and the level of irreversible strains. The technique is tested by determining the thermoviscoplastic state and time to failure of tubular specimens under a tensile force and a torque  相似文献   

3.
In the mechanics of deformed solids it is usually assumed that superposing small amplitude vibrations on a static load has no effect on the over-all characteristics of a material under strain. This hypothesis is reflected in the fact that the existing equations of state for the case of static loads with superposed small vibrations give deformation characteristics which differ little from the corresponding parameters of deformation processes taking place in the absence of excitations. At the same time, substantial changes in the deformation characteristics of a number of materials are observed under certain conditions after the application of alternating stresses of small amplitude. Reports on studies of creep of metals [1, 2], elastomers [3], and concrete [4] have been published, in which the fatigue curves obtained with small vibrations superposed on static loads lie above curves obtained for static loads corresponding to the maximum pulsating load level. Attempts have been made to explain this effect from the standpoint of the molecular-kinetic [3] and phenomenological [5] theories. Certain theoretical considerations and experimental data, discussed in this article, show that superposing a small dynamic component on a static load leads to an increase in the rate of creep of several polymer materials. This effect, which is due mainly to an increase in the polymer temperature as a result of dissipation of vibrational energy, differs from the vibration effect observed on elastomers by Slonimskii and Alekseev [3], in which the temperature rise due to the heat generated by vibrations plays no substantial part.The authors thank V. A. Volodchenkova, N. I. Gal'china, Yu. S. Levshina, Yu. P. Maksimacheva, and V. V. Tikhomirova who participated in the experimental work.  相似文献   

4.
The purpose of this study was to examine the effects of the geometries and dimensions of the rig and specimen of a small punch (SP) test on the determined creep property. The SP creep property of a specimen was evaluated using finite element analysis by varying the specimen thickness and diameter, diameter of the spherical and hemispherical indentation punches, inner diameter of the lower die, and dimensions of the chamfer of the lower die. We observed that the rupture time decreased with decreasing specimen thickness and punch diameter and with increasing chamfer size and inner diameter of the lower die. Under similar analytical conditions of static average equivalent stress in steady state, the SP creep curves reasonably agreed even in the case where the specimens or rigs have different geometries, which implied the possibility of direct comparison of the test results obtained from specimens and rigs with different dimensions and geometries.  相似文献   

5.
6.
Stresses for a circular cylinder of compressible material subjected to torsion are derived in closed form for steady state creep. It is shown that the asymptotic solution through stress leads from elastic state to plastic and then to creep and through stress difference leads to the creep state. The effect of compressibility is presented graphically. The results indicate that the value of maximum shear stress for a cylinder of compressible material is greater than that for an incompressible material and increases with the increase in a measure index n. For an incompressible material, as a particular case, the results obtained are the same as given by Marin [9].  相似文献   

7.
A test vehicle described herein has been developed for applying biaxial, tension-internal pressure, loading to thinwalled tubular specimens over a range of loading rates. The dynamic responses, as well as static initial and subsequent yield surfaces of a number of specimens made of 6061-T6 aluminum alloy, are presented. The stress path obtained in a dynamic biaxial test was reporduced statically. The corresponding stress-strain curves have been compared and found significantlky different. It is found that the dynamic initial yielding occurs at a higher state of biaxial stress depending on the loading rate than that of static yielding.  相似文献   

8.
Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on quasi-static behaviors and transition mechanism of nonlinear jumping phenomena. The static and dynamic behaviors of a doubly clamped viscoelastic microbeam actuated by one sided electrode are investigated in detail, based on a modified couple stress theory. The governing equation of motion is introduced here, which is essentially nonlinear due to its midplane stretching effect and electrostatic force. Through quasi-static analysis, the equilibrium position, pull-in voltage and pull-in location of the system are obtained with differential quadrature method and finite element method. The equivalent geometric nonlinear parameter is presented to explain the influence of the scale effect on the pull-in location. Different from elastic material, there are two kinds of pull-in voltages called as instantaneous pull-in voltage and the durable pull-in voltage in viscoelastic system. Then, Galerkin discretization and the method of multiple scales are applied to determine the response and stability of the system for small vibration amplitude. A new perturbation method to deal with viscoelastic term is presented. Theoretical expressions about the parameter spaces of linear-like vibration, hardening-type vibration and softening-type vibration are then deduced. The influence of viscoelasticity and scale effect on nonlinear dynamic behavior is studied. Results show that the viscoelasticity can reduce the effective elastic modulus and make the system tend to softening-type vibration; the scale effect can increase effective elastic modulus and make the system tend to hardening-type vibration. And most of all, simulation results of case studies are used to realize parameter optimization. Then parameter conditions of linear-like vibration, which is desired for many applications, are obtained. In this paper, the results of multi-physical field coupling simulation are used to verify the theoretical analysis.  相似文献   

9.
In this paper, the effect of constraint induced by the crack depth on creep crack-tip stress field in compact tension (CT) specimens is examined by finite element analysis, and the effect of creep deformation and damage on the Hutchinson–Rice–Rosengren (HRR) singularity stress field are discussed. The results show the constraint induced by crack depth causes the difference in crack-tip opening stress distributions between the specimens with different crack depth at the same C*. The maximum opening stress appears at a distance from crack tips, and the stress singularity near the crack tips does not exist due to the crack-tip blunting caused by the large creep deformation in the vicinity of the crack tips. The actual stress calculated by the finite element method (FEM) in front of crack tip is significantly lower than that predicted by the HRR field. Based on the reference stress field in the deep crack CT specimen with high constraint, a new constraint parameter R is defined and the constraint effect in the shallow crack specimen is examined at different distances ahead of the crack tip from transient to steady-state creep conditions. During the early stages of creep constraint increases with time, and then approaches a steady state value as time increases. With increasing the distance from crack tips and applied load, the negative R increases and the constraint decreases.  相似文献   

10.
We study the laws determining the mechanical behavior of materials at the postcritical deformation stage. Proportional tension-torsion tests of thin-walled tubular specimens of structural steels were carried out for various deformation trajectories to obtain experimental data about the work softening of steels under plane stress state conditions. The obtained experimental data were analyzed to determine the instant of time in the deformation process at which the transition to the postcritical stage occurs.  相似文献   

11.
The creep of paper is accelerated by moisture cycling, an effect known as mechano-sorptive creep. It has also been observed that the mechano-sorptive effects are larger in compression than in tension. In this paper a simplified network model for mechano-sorptive creep is presented. It is assumed that the anisotropic hygroexpansion of the fibres leads to large stresses at the fibre–fibre bonds when the moisture content changes. The resulting stress state will accelerate creep if the fibre material obeys constitutive laws that are non-linear in stress. Geometrical fibre effects are included in the model in order to capture experimental observations of the differences between paper loaded in tension and compression. Theoretical predictions based on the developed model are compared to experimental results for paper both under tensile and compressive loading at varying moisture content. The important features in the experiments are captured by the model, i.e. the creep is accelerated by the moisture cycling and the mechano-sorptive effects are larger in compression than in tension.  相似文献   

12.
Multiaxial creep and cyclic plasticity in nickel-base superalloy C263   总被引:1,自引:0,他引:1  
Physically-based constitutive equations for uniaxial creep deformation in nickel alloy C263 [Acta Mater. 50 (2002) 2917] have been generalised for multiaxial stress states using conventional von Mises type assumptions. A range of biaxial creep tests have been carried out on nickel alloy C263 in order to investigate the stress state sensitivity of creep damage evolution. The sensitivity has been quantified in C263 and embodied within the creep constitutive equations for this material. The equations have been implemented into finite element code. The resulting computed creep behaviour for a range of stress state compares well with experimental results. Creep tests have been carried out on double notched bar specimens over a range of nominal stress. The effect of the notches is to introduce multiaxial stress states local to the notches which influences creep damage evolution. Finite element models of the double notch bar specimens have been developed and used to test the ability of the model to predict correctly, or otherwise, the creep rupture lifetimes of components in which multiaxial stress states exist. Reasonable comparisons with experimental results are achieved. The γ solvus temperature of C263 is about 925 °C, so that thermo-mechanical fatigue (TMF) loading in which the temperature exceeds the solvus leads to the dissolution of the γ precipitate, and a resulting solution treated material. The cyclic plasticity and creep behaviour of the solution treated material is quite different to that of the material with standard heat treatment. A time-independent cyclic plasticity model with kinematic and isotropic hardening has been developed for solution treated and standard heat treated nickel-base superalloy C263. It has been combined with the physically-based creep model to provide constitutive equations for TMF in C263 over the temperature range 20–950 °C, capable of predicting deformation and life in creep cavitation-dominated TMF failure.  相似文献   

13.
应力波动力扰动下脆性岩石的静力蠕变特性,对深部地下工程围岩变形的评价有重要的实践意义.动力载荷作用导致的局部细观裂纹损伤严重影响脆性岩石蠕变力学行为.基于细观裂纹扩展与应力关系模型、动力扰动损伤演化函数、静动力载荷演化路径函数与黏弹性本构模型,提出一种应力波动力扰动下脆性岩石蠕变断裂特性的宏细观力学模型.其中动力损伤通过控制岩石内部细观裂纹数量变化实现.模型描述了应力波动力扰动下岩石的应变时间演化曲线,解释了岩石动力扰动下蠕变失效特性.研究了不同应力波幅值及周期影响下的脆性岩石应变-时间关系曲线,并通过试验结果验证了模型的合理性.讨论了动力损伤变化形式,突变发生时刻,突变量的大小对岩石蠕变失效特性的影响.分析了应力波幅值、周期对岩石动态动力损伤效应以及蠕变失效特性的影响.主要研究结果:动力损伤的变化值越大,岩石蠕变失效发生时间越短.冲击载荷扰动期间,动力损伤发生的时刻及增加的形式,对动力扰动后的岩石应变及蠕变破坏时间影响很小.动力损伤变化量随应力波幅值增加、周期减小而加速增大.应力波幅值越大、周期越小,岩石发生蠕变失效时间越短.  相似文献   

14.
This paper describes the effect of thermal exposure (high-temperature exposure) (T = 675?C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675?C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress–strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.  相似文献   

15.
To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a ’state of the art’ creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretation.  相似文献   

16.
A relationship between noncoaxial tensors of stress and creep strain rate is established for the case of plane strain or a plane stress state. The basis is the experimentally substantiated hypothesis on the existence of a creep surface, which is a set of loading paths in the stress space that, at any time, ensure identical values of the creep intensity for a certain chosen measure and orthogonality of the creep strain rate vector to this surface. The relation obtained completely corresponds to available experimental data for complex loading. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 135–140, March–April, 1998.  相似文献   

17.
岩石蠕变断裂特性的试验研究   总被引:5,自引:1,他引:5  
陈有亮 《力学学报》2003,35(4):480-484
以一类红砂岩为例对蠕变条件下岩石裂纹的起裂和扩展的机理、准则进行了试验研究和理论分析.试验结果表明,岩石裂纹常常在初始应力强度因子KI小于断裂韧度KIC的情况下,经过一段时间的持续蠕变变形产生裂纹起裂和扩展.当然,初始应力强度因子KI小于断裂韧度KIC是有限度的,KI不得小于另一固定值KIC2,KIC2表征了岩石在蠕变条件下抵抗裂纹起裂和扩展的能力,而且其值小于KIC,可称之为蠕变断裂韧度.在岩石工程的设计和计算中,KIC2是一个重要参数.  相似文献   

18.
The effect of couple stresses at a crack tip is investigated by considering two particular problems. A formally exact solution is obtained (for couple-stress and micropolar elasticity) for the case of a semi-infinite crack with a prescribed internal stress. Secondly, the problem of a finite crack in an infinite medium (with couple stresses) under uniform tension at infinity, is solved by matched expansions when the couple stress parameter is small compared with the crack length. In each case it is shown that the energy release rate from a crack tip tends to the classical elastic value as the couple stress (or micropolar) parameter tends to zero.  相似文献   

19.
时变参数时滞减振控制研究   总被引:6,自引:5,他引:1  
时滞动力吸振器对谐波激励有着良好的减振控制效果,但对随机激励的减振控制效果却并不明显,具体表现为时滞动力吸振器对随机激励的减振控制效果与被动吸振器几乎相同。针对上述问题,本文提出了一种新的时变参数时滞减振控制方法。在原有时滞减振控制方法的基础上,首先将时滞增益系数由定值形式变为时间函数形式,然后通过时变优化得到多组时滞控制参数并使其以一定时间周期循环作用于减振控制过程,通过这种方法进一步改善了时滞动力吸振器减振性能。本文最后以二自由度时滞动力吸振器减振模型为例,以主系统的振动响应为仿真对象,运用精细积分法求解了具有时变时滞参数的时滞动力学方程,以此得到了在谐波激励和随机激励作用下主系统振动的时域仿真结果。研究结果表明,在时变参数时滞动力吸振器的控制下,主系统无论是受谐波激励作用还是受随机激励作用,其振动位移、振动速度和振动加速度均比在定值参数时滞动力吸振器控制下时有大幅的减少,时滞动力吸振器的减振性能有了明显的改善。   相似文献   

20.
李益萱  张治君  邵闯 《实验力学》2014,29(4):499-505
飞机结构在飞行过程中同时承受气动载荷和振动载荷的联合作用,这两种载荷的耦合加载试验对于飞机结构成为一项重要的研究内容,所以有必要对此类试验的可行性及其耦合加载方式进行研究。此次试验以气囊加载静载/常规疲劳载荷状态下试件的振动响应测试为目的,设计符合试验要求的试件和整套试验装置。得到了气囊5种不同加载情况下试件振动响应变化情况,并对此试验结果进行了理论分析,得出以下结论:a)气囊模拟静载/常规疲劳载荷加载不会大幅改变结构本身振动特性,此耦合试验方法所模拟环境比较接近飞机结构真实载荷环境;b)加载气囊的个数、部位及加载力的不同对试件结构的振动响应有一定影响,应增加气囊蓄能器或在试验前进行分析以选择合理的加载点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号