首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
带源参数的二维热传导反问题的无网格方法   总被引:1,自引:1,他引:1  
程荣军  程玉民 《力学学报》2007,39(6):843-847
利用无网格有限点法求解带源参数的二维热传导反问题,推导了相应的离散方程. 与 其它基于网格的方法相比,有限点法采用移动最小二乘法构造形函数,只需要节点信息,不 需要划分网格,用配点法离散控制方程,可以直接施加边界条件,不需要在区域内部求积分. 用有限点法求解二维热传导反问题具有数值实现简单、计算量小、可以任意布置节点等优点. 最后通过算例验证了该方法的有效性.  相似文献   

2.
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.  相似文献   

3.
This paper presents a multi-scale model in phase transitions of solid materials with both macro and micro effects. This model is governed by a semi-linear nonconvex partial differential equation which can be converted into a coupled quadratic mixed variational problem by the canonical dual transformation method. The extremality conditions of this variational problem are controlled by a triality theory, which reveals the multi-scale effects in phase transitions. Therefore, a potentially useful canonical dual finite element method is proposed for the first time to solve the nonconvex variational problems in multi-scale phase transitions of solids. Applications are illustrated. Results shown that the canonical duality theory developed by the first author in nonconvex mechanics can be used to model complicated physical phenomena and to solve certain difficult nonconvex variational problems in an easy way. The canonical dual finite element method brings some new insights into computational mechanics.  相似文献   

4.
The mutual effect between heat and mass transfer is investigated for wood dried at high temperature. A numerical model of coupled heat and mass transfer under the effect of the pressure gradient is presented. Based on the macroscopic viewpoint of continuum mechanics, the mathematical model with three independent variables (temperature, moisture content and gas pressure) is constructed. Mass transfer in the pores involves a diffusional flow driven by the gradient of moisture content, convectional flow of gaseous mixture governed by the gradient of gas pressure, the Soret effect and phase change of water. Energy gain or loss due to phase change of water is taken as the heat source. Numerical methods, the finite element method and the finite difference method are used to discretize the spatial and time dimension, respectively. A direct iteration method to solve the nonlinear problem without direct evaluation of the tangential matrix is introduced. The local convergence condition based on the contraction–mapping principle is discussed. The mathematical model is applied to a 3-D wood board dried at high temperature with the Neumann boundary conditions for both temperature and moisture content, and the Dirichlet boundary conditions for gas pressure.  相似文献   

5.
We introduce a new method to discretize inclined non‐planar two‐dimensional (2D) fractures in three‐dimensional (3D) fractured media for subsurface flow and transport simulations. The 2D fractures are represented by ellipsoids. We first discretize the fractures and generate a 2D finite element mesh for each fracture. Then, the mesh of fractures is analyzed by searching and treating critical geometric configurations. Based on that search, the method generates a quality mesh and allows for including finer grids. A solute transport problem in fractured porous media is solved to test the method. The results show that the method (i) adequately represents the fractured domain by maintaining the geometric integrity of input surfaces and geologic data, (ii) provides accurate results for both simple and complex fractured domains, (iii) is insensitive to spatial discretization, and (iv) is computationally very efficient. For inclined and vertical fractures, analytical and numerical solutions are shown to be in good agreement. The method is therefore suitable to discretize fracture networks for flow and transport simulations in fractured porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a numerical study of infiltration processes on stratified porous media. The study is carried out to examine the performance of a finite volume method on problems with discontinuous solutions due to the transmission conditions in the interfaces. To discretize the problem, a curvilinear co‐ordinate system is used. This permits matching the interface with the boundary of the control volumes that interchange fluxes between layers. The use of the multigrid algorithm for the resulting systems of equations allows problems involving a large number of nodes with low computational cost to be solved. Finally, some numerical experiments, which show the capillary barrier behaviour depending on the material used for the different layers and the geometric design of the interface, are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Using the continuum mechanical model of solid-solid phase transitions of Abeyaratne and Knowles, this paper examines the large time dynamical behavior of a phase boundary. The problem studied concerns a finite elastic bar initially in an equilibrium state that involves two material phases separated by a phase boundary at a given location. Interaction between the moving phase boundary and the elastic waves generated by an impact at the end of the bar and subsequent reflections is studied in detail by using a finite difference scheme. The numerical results show that the phase boundary in a finite bar returns to an equilibrium state after a disturbance of finite duration, whether the two-phase material is trilinear or not.  相似文献   

8.
9.
A new computational method is developed for numerical solution of the Richards equation for flow in variably saturated porous media. The new method, referred to as the mixed transform finite element method, employs the mixed formulation of the Richards equation but expressed in terms of a partitioned transform. An iterative finite element algorithm is derived using a Newton–Galerkin weak statement. Specific advantages of the new method are demonstrated with applications to a set of one— dimensional test problems. Comparisons with the modified Picard method show that the new method produces more robust solutions for a broad range of soil– moisture regimes, including flow in desiccated soils, in heterogeneous media and in layered soils with formation of perched water zones. In addition, the mixed transform finite element method is shown to converge faster than the modified Picard method in a number of cases and to accurately represent pressure head and moisture content profiles with very steep fronts. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
Vacuum arc remelting is a process for producing homogeneous ingots of reactive and macrosegregation-sensitive alloys. A mathematical model of the transport phenomena in the ingot melt is presented together with a discussion of the various simplifying assumptions and approximations that make the problem tractable, with particular attention on transport in the interdendritic mushy zone and on the magnetohydrodynamics. The finite element method is used to discretize the equations for the non-isothermal flow problem and the quasi-static electromagnetic problem. Coupling of the finite element solutions for the two field problems is accomplished using the Parallel Virtual Machine software. An analysis of the fluid flow and heat transport in the melt pool of the solidifying ingot shows some of the factors that influence ingot quality during quasi-steady growth conditions. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
运用边光滑有限元法,研究分析了加筋板结构的静力和自由振动问题。在边光滑有限元法中,将基于边的应变光滑技术用于对原来的应变场进行光滑操作;由于应变光滑技术能够适当地软化原来过刚的有限元模型,从而能够得到更加接近于系统准确刚度的光滑有限元模型;鉴于三角形单元良好的适用性,选用三角形单元对模型进行网格划分;同时,为了解决低阶Reissner-Mindlin板单元弯曲过程中的横向剪切自锁问题,采用了一种新型的离散剪切间隙技术。算例的数值计算结果表明,与传统的有限元法相比,边光滑有限元法能够得到精度更高的计算结果,且收敛更快,计算效率更佳。  相似文献   

12.
The present paper uses the mathematics model for consolidation of unsaturatedsoil developed in ref.[1]to solve boundary value problems.The analytical solutionsfor one-dimensional consolidation problem are gained by making use of Laplacetransform and finite Fourier transform.The displacement and the pore water pressureas well as the pore gas pressure are found from governing equations simultaneously.The theoretical formulae of coefficient and degree of consolidation are also given inthe paper.With the help of the method of Galerkin Weighted Residuals,the finiteelement equations for two-dimensional consolidation problem are derived.A FORTRANprogram named CSU8 using8-node isoparameter element is designed.A plane strainconsolidation problem is solved using the program,and some distinguishing features onconsolidation of unsaturated soil and certain peculiarities on numerical analysis arerevealed.These achievements make it convenient to apply the theory proposed by theauthor in engineering practice.  相似文献   

13.
Zakerzadeh  Rana  Zunino  Paolo 《Meccanica》2019,54(1-2):101-121

We study the effect of poroelasticity on fluid–structure interaction. More precisely, we analyze the role of fluid flow through a deformable porous matrix in the energy dissipation behavior of a poroelastic structure. For this purpose, we develop and use a nonlinear poroelastic computational model and apply it to the fluid–structure interaction simulations. We discretize the problem by means of the finite element method for the spatial approximation and using finite differences in time. The numerical discretization leads to a system of non-linear equations that are solved by Newton’s method. We adopt a moving mesh algorithm, based on the Arbitrary Lagrangian–Eulerian method to handle large deformations of the structure. To reduce the computational cost, the coupled problem of free fluid, porous media flow and solid mechanics is split among its components and solved using a partitioned approach. Numerical results show that the flow through the porous matrix is responsible for generating a hysteresis loop in the stress versus displacement diagrams of the poroelastic structure. The sensitivity of this effect with respect to the parameters of the problem is also analyzed.

  相似文献   

14.
The problem of ice melting in unsaturated frozen soil in the presence of the capillary pressure in the water-air zone is formulated. The complete system of boundary conditions on the phase transition front is derived. For solving the nonlinear problem a numerical method is proposed. The dependence of the water saturation distribution on the form of the Leverett function, the capillary pressure, and the external pressure and temperature gradients is investigated. In the limiting case of saturated frozen soil the numerical and analytical solutions are compared.  相似文献   

15.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A two-dimensional numerical procedure is presented to analyse the transient response of saturated porous elastic soil layer under cyclic loading. The procedure is based on the element-free Galerkin method and incorporated into the periodic conditions (temporal and spatial periodicity). Its shape function is constructed by moving least-square approximants, essential boundary conditions are implemented through Lagrange multipliers and the periodic conditions are implemented through a revised variational formulation. Time domain is discretized through the Crank–Nicolson scheme. Analytical solutions are developed to assess the effectiveness and accuracy of the current procedure in one and two dimensions. For only temporal periodic problems, a one-dimensional transient problem of finite thickness soil layer is analysed for sinusoidal surface loading. For both temporal and spatial periodic problems, a typical two-dimensional wave-induced transient problem with the seabed of finite thickness is analysed. Finally, a moving boundary problem is analysed. It is found that the current procedure is simple, efficient and accurate in predicting the response of soil layer under cyclic loading.  相似文献   

18.
对于铅直圆筒内受交变拉压轴向载荷作用的细长杆柱,当杆柱底端所受到的轴向压力大于杆柱屈曲的临界载荷时,细长杆柱在圆筒内将产生螺旋屈曲,杆柱的屈曲变形将激励杆柱在圆筒内产生横向振动。以细长杆在圆筒内的瞬时屈曲构型作为杆柱横向振动的位移激励,建立了屈曲位移激励下的细长杆在圆筒内横向振动与杆管碰撞规律的仿真模型。采用有限差分法对井深进行离散,Newmark 法对时间进行离散,以恢复系数法建立了细长杆和圆筒的碰撞条件,对细长杆在圆筒内的横向振动数学模型进行了数值仿真。仿真结果表明,细长杆和圆筒内壁的碰撞现象主要发生在细长杆底端受压发生屈曲后,且几乎沿整个圆筒都有发生,从圆筒顶部至底部的碰撞力峰值逐渐增大;而在杆柱底端受拉时碰撞现象很少,碰撞力也较小。  相似文献   

19.
In this paper, we introduce a fully coupled thermo‐hydrodynamic‐mechanical computational model for multiphase flow in a deformable porous solid, exhibiting crack propagation due to fluid dynamics, with focus on CO2 geosequestration. The geometry is described by a matrix domain, a fracture domain, and a matrix‐fracture domain. The fluid flow in the matrix domain is governed by Darcy's law and that in the crack is governed by the Navier–Stokes equations. At the matrix‐fracture domain, the fluid flow is governed by a leakage term derived from Darcy's law. Upon crack propagation, the conservation of mass and energy of the crack fluid is constrained by the isentropic process. We utilize the representative elementary volume‐averaging theory to formulate the mathematical model of the porous matrix, and the drift flux model to formulate the fluid dynamics in the fracture. The numerical solution is conducted using a mixed finite element discretization scheme. The standard Galerkin finite element method is utilized to discretize the diffusive dominant field equations, and the extended finite element method is utilized to discretize the crack propagation, and the fluid leakage at the boundaries between layers of different physical properties. A numerical example is given to demonstrate the computational capability of the model. It shows that the model, despite the relatively large number of degrees of freedom of different physical nature per node, is computationally efficient, and geometry and effectively mesh independent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号