首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 167 毫秒
1.
放水塔附近滑坡是金盆水库右岸原1号滑坡体下游边界段的残留体,受短期强降水因素的诱发导致坡体变形、失稳滑动。滑坡体具顺层牵引滑动特征,且平面上,不同区段变形破坏程度不同,其表现形式与坡体平面旋转有一定的相似性。坡体滑动主要受4组结构面的控制,其中的软弱片理结构面(产状150°170°∠35°55°)与产状为230°290°∠35°55°的另一组结构面构成滑坡的滑动控制面。基岩内发育的大量的软弱片理结构面,大气强降水,滑坡上部相对平缓的地貌及人类工程对地表植被环境的破坏,滑坡体下部喷护层的存在等因素的综合影响,导致了坡体的失稳滑动。  相似文献   

2.
喜马拉雅山东南地区地质灾害发育规律初步研究   总被引:4,自引:0,他引:4  
利用遥感手段,结合MapGis,研究了喜马拉雅山东南地区地质灾害的发育情况,发现本区发育的主要地质灾害有滑坡、崩塌、泥石流、冰湖以及堰塞湖。其中崩塌、滑坡、泥石流斜坡地质灾害是本区最重要的地质灾害类型,占到总灾害数量的95.3%。在此基础上对喜马拉雅山东南地区地质灾害发育规律初步研究,发现本区地质灾害的发育在空间上的分布并非均匀,而是具有丛集性的特点。滑坡灾害主要发育在隆子和朗县。泥石流灾害比较严重的有米林、隆子和洛扎3县,而崩塌则主要集中在隆子县。研究发现,本区滑坡发育与地层、地形坡度以及土地类型关系密切,其中修康群、日当组和念青唐古拉群是本区的"易滑地层"。涅如组由于面积大,其中发育的滑坡较多,但是滑坡的发育率只略高于本区的平均水平。统计表明,16°~30°的坡度范围是滑坡最容易发生的。大于45°以上的坡段很少发生滑坡。灌木林和天然草地这两种土地类型滑坡发育率最高。对于泥石流,研究表明,涅如组中泥石流发育面积最大,发育率也最高。泥石流发育的最适宜坡度也是16°~30°这样一个坡度范围。冰川和永久积雪区则最易发生泥石流。崩塌发育与地层类型、坡度的关系较为密切,崩塌主要发育在涅如组中,并且集中在坡度大于60°以上的陡坡段中。这些初步成果的取得,是以后进行该区地质灾害空间预测的基础。  相似文献   

3.
水帘洞煤矿工业场地西侧黄土高边坡为老滑坡的后壁,在边坡的脚下有老滑坡体残留物。地表水沿黄土垂直节理、裂隙下渗,逐渐在边坡的顶部形成落水洞;边坡还受黄土层理、倾角(5°~10°)和古土壤层位置的控制,地表水下渗至古土壤层,古土壤层是良好的隔水层,加上黄土层理倾向沟谷,在古土壤层面位置(半山腰)易形成与边坡顶部落水洞贯通的落水洞出口。受长期降水或短期强降水的影响,导致边坡失稳。  相似文献   

4.
小湾水电站进水口高边坡地质条件及开挖坡型复杂,断层、节理裂隙发育并相互切割,坝顶平台至进水口底板平台平均开挖坡度88°,最大高差106m,其中垂直开挖段81m,最大水平退坡深度170余米。伴随边坡开挖过程中,边坡上部岩体产生了一系列的变形破裂现象,主要表现为沿混凝土坡面分布的张开宽度和延伸长度不一的裂缝及起壳现象。本文结合边坡的实际工程地质条件和监测结果数据,对变形破裂现象的形成机制进行了系统的分析。结果表明,裂缝产生的原因主要是由于地处高地应力区岩体在边坡开挖过程中产生的卸荷回弹表现,是正常的卸荷松弛变形。在此基础上,对边坡的稳定性分析表明,该边坡稳定性良好。  相似文献   

5.
宋焱勋  彭建兵  张骏 《力学学报》2008,16(5):620-624
本文依据西北某油田倒班基地黄土填方高陡边坡工程勘察, 研究了该边坡的变形破坏机制, 通过对边坡工程地质条件及变形破坏分析, 建立FLAC3D地质模型, 采用数值模拟方法研究了边坡变形破坏机制。研究结果表明, 主要变形区或破坏区为陡坎周围至其沿坡面向下20~25m 的范围之间, 其破坏深度底界为全新世填土层Q4与原状黄土Q3接触面, 但要重点控制沿坡面向下20~25m 的范围之间的变形。数值模拟结果表明, 该边坡目前整体稳定性较好, 不会发生整体变形破坏。  相似文献   

6.
陕北地区黄土节理对公路边坡稳定性的影响   总被引:1,自引:0,他引:1  
黄土节理主要分为原生节理、构造节理、风化节理和卸荷节理。陕北地区主要发育原生节理和构造节理,原生节理多分布在马兰黄土中,较密集,延伸长;构造节理多分布在离石黄土中,方向性强,区域性强。节理对边坡稳定性的影响因产状不同而不同。与边坡走向一致的顺坡斜节理对边坡稳定性影响较大,垂直节理影响较小;走向与边坡走向垂直和斜交的节理对边坡稳定性影响较小。多组节理在平面内可组成层面棋盘格式和“X”格式;在空间内可组成板状结构体、楔椎状结构体和柱状结构体。不同形状的结构体对边坡产生不同影响。最后,针对对边坡稳定性影响最大的斜节理,讨论了沿构造(斜)节理面产生边坡土体滑落的可能性的核算方法。  相似文献   

7.
郑光  杜宇本  许强 《力学学报》2010,18(4):521-528
岩体中结构面的展布及其组合特征决定了岩体的工程地质性质和力学性状,影响着岩体的破坏方式。大瑞铁路澜沧江大桥所处的澜沧江构造带,具有高地震烈度、活跃的新构造运动、活跃的外动力地质条件、活跃的岸坡浅表改造过程等地质特征。工程区两岸节理裂隙等弱面发育,岸坡浅表改造过程强烈,导致岩体结构复杂。通过野外现场调查,对两岸边坡岩体结构面数据进行统计分析,采用x2检验与K-S检验法对结构面进行概率密度拟合,分析岩体结构特征。结果表明:(1)右岸的优势结构面有三组; (2)左岸的优势结构面有四组; (3)各组优势结构面产出状态数据均服从正态分布。在统计分析结果的基础上,建立两岸岩体结构的统计模型,并对边坡破坏模式进行定性分析,认为:(1)右岸边坡变形破坏模式为滑移 压致拉裂; (2)左岸结构面贯通性不好,主要的破坏模式是局部块体滑移。
  相似文献   

8.
为了解含有逆坡裂隙和水平裂隙的露天矿边坡在地震作用下的破坏过程和形式,基于颗粒流方法对边坡进行建模,并实施地震模拟。根据实例构建了露天矿边坡模型,并设置了87°的向斜左翼构造面裂隙和水平裂隙。数值模拟了地震载荷频率为5Hz时,加速度分别为0.2g、0.3g、0.4g、0.5g时的边坡破坏情况。其中每种加速度情况下选取的持续时间分别为8s、14s、20s及稳定状态(颗粒位移速度小于10~(-3)m/s),总计16种工况。模拟结果表明:随时间的发展,初期边坡坡面附近出现裂缝并向坡外发展,未开裂岩体始终完整稳定;各加速度下边坡岩体破坏和稳定的部分几乎相同;随着加速度的增加,边坡破坏时间逐渐缩短;逆坡裂隙边坡破坏主要是边坡内被裂隙分割岩石的倾覆、翻滚、垮塌;顺坡裂隙边坡是岩石的断裂,形成贯穿于边坡的破坏带。  相似文献   

9.
边坡临界滑动场技术是近年发展起来的一种边坡稳定性分析方法。它能准确快速确定多层介质、多台阶边坡任意形状的临界滑动面,全面评价边坡整体和局部稳定性。文章首先应用临界滑动场技术对原设计15°坡角时的龙桥排土场边坡进行临界滑动面搜寻,确定边坡整体安全系数为1.42,证明原设计的15°坡角取值过于保守。然后再应用临界滑动场技术的扩展方法进行反向分析,在给定安全系数为1.30的条件下,求得最佳设计坡角为17°。研究成果为将来矿山的排土工作提供指导,具有一定的工程实用性。  相似文献   

10.
林锋  黄润秋  严明  蔡国军 《力学学报》2010,18(5):766-773
小湾水电站坝址位于高山峡谷区,深切峡谷形成演化的动力学过程决定了坝区边坡目前的形态特征、岩体结构特征及稳定性状况,由此深刻影响边坡设计方案和建基面的选择。基于现场工作和分析测试成果,得出主要结论有:(1)由于河谷形成过程中的卸荷作用及风化作用,边坡浅表层改造强烈,产生了大量的中缓倾角裂隙,坡面附近近SN向陡裂张开、扩展; 浅表层发育了大量近EW向挤压带(面); (2)岸坡浅表层中缓倾角结构面的产生机制,包括沿原构造节理扩展和新生裂隙; 坡体下部的中缓倾角裂隙会因差异卸荷回弹而继续扩展,坡体中上部岩体质量劣化,在地应力场调整过程中,因剪切滑移继续扩展,坡体逐渐进入时效变形阶段。(3)对河谷边坡进行了地质—工程分类,指出各类边坡可能变形失稳模式包括倾倒变形、平面滑动、阶梯状滑动、楔形滑动和堆积体滑动等5种。  相似文献   

11.
下伏软弱层黄土边坡变形机制分析及治理对策研究   总被引:1,自引:0,他引:1  
本文研究了陕北某电厂夹断层破碎带上覆黄土的泥岩、砂岩互层反倾边坡的变形机制,并研究治理对策及其治理效果。通过边坡工程地质条件及变形破坏特征分析,建立FLAC3D地质模型,采用数值模拟方法研究了边坡变形破坏机制,在此基础上提出削方减载、锚筋桩、锚杆及坡面防护的综合治理措施。研究结果表明,边坡的变形受开挖坡形的影响,坡体浅表层特别是断层带及坡顶黄土部位出现大范围拉应力集中,断层带出现向坡外的挤出变形,带动上部黄土的牵引式变形,引起沿黄土和基岩基覆界面的剪切变形,在黄土中出现大量拉裂缝,在一定条件下潜在滑移面逐渐贯通,坡体将产生整体失稳。边坡的治理应通过削方减载改善坡体应力环境,并重点控制断层带及黄土与基岩基覆界面的变形,数值模拟结果表明,治理后边坡稳定性较好,满足设计要求。  相似文献   

12.
结合典型实例阐明斜坡地质灾害的空间预测是灾害防治工作的前提条件与成败关键。继而讨论了“斜坡地质灾害空间预测”的内涵与工作程序,以及与斜坡稳定性评价预测相关的斜坡破坏型式,斜坡结构类型,斜坡破坏的环境条件和人类活动的影响等问题。在斜坡地质灾害空间预测的定义中,笔者将预测时段仅限于“工程年代”之内,且前提是保持现有斜坡结构和环境条件,以及可预料的人类活动影响;预测程序是先进行斜坡稳定性预测,然后再对稳定性差或较差的坡段进行灾害危险性(度)预测。关于斜坡破坏型式的划分,一是从它的影响范围和“量”与“质”的关系看都需重视其单次规模;二是要与斜坡的成因结构类型相结合,才能对现场地质调查与研究具有指导意义。为了展示斜坡的成因结构类型对稳定性的控制意义,本文提供了长江三峡工程库区和西部大开发中总结出来的碎屑岩和副变质岩斜坡的新类型系统,并对三类土质斜坡的典型结构特征和稳定性进行了简要比较。关于环境条件对斜坡稳定性影响的量化研究,笔者更看重多个非自体(非本坡段)天然模型观测和滑坡反算的成果。同时建议在全面准确的现场调研的基础上建立确定性地质模型并应用基础学科的相关原理进行单要素的量化分析和单元分析,以便进一步揭示斜坡变形破坏机理。  相似文献   

13.
充分利用大量公路黄土路堑高边坡实例,构建了基于范例推理的边坡稳定性预测模型。该模型是将已建黄土路堑高边坡实例作为源范例,而将待分析边坡作为目标范例,通过源范例和边坡范例之间的相似度计算,得到目标范例与源范例之间的相似性序列,找出与目标边坡范例最相似的源范例,从而实现了黄土路堑高边坡的稳定性预测。实例分析表明,该法不仅原理简单、使用方便,而且效果良好。  相似文献   

14.
根据黄土高边坡破坏面的实际特征,假定最危险滑动面为抛物线型,对高边坡进行可靠度分析,应用数学原理,建立了黄土高边坡的设计模型,并对铜黄一级公路黄土高边坡进行分析验证,结果表明,该方法计算的结果与实际较接近。该方法物理意义明确,易操作,可供设计人员参考。  相似文献   

15.
宝鸡市狄家坡滑坡稳定性研究   总被引:4,自引:0,他引:4  
宝鸡市狄家坡斜坡是一个古滑坡。在调查滑坡区水文地质和工程地质条件的前提下, 本文描述了滑坡的形态与物质结构、滑坡表层的变形破坏特征及其影响因素, 探讨了古滑坡的发生机制。引用可以任意条分块体的Sarma方法, 研究了该滑坡在自然、地震、饱水和三者同时存在共四种状态下的稳定性, 并进行了斜坡表层黄土坡体的稳定性对于地下水位上升的敏感性分析。基本结论是, 狄家坡滑坡在整体上是稳定的, 其表层的黄土坡体在地下水位上升时会发生失稳破坏。最后, 提出了进行滑坡防治的工程对策。  相似文献   

16.
在提出随机角生成曲线滑动面方法的基础上,通过改变选定参数来搜索临界滑动面,对渗流作用下的不同土质边坡进行稳定性分析。 考虑渗流效应时,将土体视为三种土条划分情况,并进行受力分析,推导出简化Janbu法中土条的浮力和渗透力计算公式。同时,对实际渗流场做出合理简化,以便应用于计算机编程。算例对比分析表明: ①此方法计算出的最小安全系数与已有研究成果非常接近,得到的最危险滑动面也颇为相似,可证明本文方法的正确性; ②以非圆弧滑动面与圆弧滑动面计算出的最小安全系数相比,前者明显要小,建议在有渗流作用时应采用非圆弧滑动面; ③对两个不同水位下的均质土坡,以水位与坡高之比为参数对边坡状态进行分析时,结果表明随着地下水位的升高,边坡安全系数急剧下降,因而,渗流效应是边坡发生失稳的一个重要因素,工程实际中应特别注意边坡排水设施的设置。  相似文献   

17.
黄土地层地表径流下潜模式与地质灾害   总被引:1,自引:0,他引:1  
指出在黄土滑坡、地裂缝、黄土洞穴等地质灾害发生发展过程中下渗重力水所起的作用最为关键,对下渗重力水的基本特点进行了全面归纳总结。以黄土洞穴灾害为例,将黄土暗穴形成过程中黄土地层地表径流的下潜模式概化为渗透重力水漫渗型下潜模式、地表径流集中灌入下潜型模式、渗透重力水沿优势渗流通道集中下潜型模式以及混合灌渗集中下潜型模式等4种基本模式。  相似文献   

18.
考虑土性参数空间变异性的边坡可靠度分析   总被引:3,自引:0,他引:3  
采用基于Morgenstern-Price法的Monte-Carlo模拟对黄河大堤开封段边坡进行了可靠度分析,并用抽样法进行了考虑土性参数空间变异性的可靠度分析,讨论了土性参数互相关性对可靠指标的影响,得到了一些有益的结论。对边坡工程安全度评价研究有一定的理论意义和实际应用价值。  相似文献   

19.
言志信  张森  张学东  段建 《力学学报》2010,18(6):844-850
通过对汶川地震边坡调研,发现大量边坡破坏形式为坡顶拉裂、下部坡体剪切破坏。本文利用有限差分程序,从边坡土体的应力状态出发,通过监测边坡土体的状态、位移和剪应变增量变化等,分析了岩土体在静力、横向地震和耦合地震作用下的破坏过程,发现坡顶附近发生张破坏,以下部位发生剪切破坏,而非传统的地质工程观点——地震边坡破坏主要是地震惯性力造成的剪切破坏。并提出一种新方法——关键点相对位移法,来判断边坡的动力稳定性,数值模拟结果与已有研究成果及震后灾害调查结果具有良好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号