首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
庞朝阳  周正威  郭光灿 《中国物理》2006,15(12):3039-3043
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45\sqrt{N} times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than \sqrt{N} for most images, and it is more efficient than the pure quantum algorithm.  相似文献   

2.
The quantum random walk is a possible approach to construct new quantum search algorithms. It has been shown by Shenvi et al. [Phys. Rev. A 67(2003)52307] that a kind of algorithm can perform an oracle search on a database of N items with O(√N) calling to the oracle, yielding a speedup similar to other quantum search algorithms. We study the effect of white or Gaussian noise on this algorithm. The algorithm loses efficiency when noise is added. We also show that noise on the target state plays a more important role than that on other states. Finally we compare the effects of similar types of noise in the quantum random walk search algorithm and Grover's search algorithm.  相似文献   

3.
王洪福  张寿 《中国物理 B》2009,18(7):2642-2648
This paper proposes a method to measure directly the concurrence of an arbitrary two-qubit pure state based on a generalized Grover quantum iteration algorithm and a phase estimation algorithm. The concurrence can be calculated by applying quantum algorithms to two available copies of the bipartite system, and a final measurement on the auxiliary working qubits gives a better estimation of the concurrence. This method opens new prospects of entanglement measure by the application of quantum algorithms. The implementation of the protocol would be an important step toward quantum information processing and more complex entanglement measure of the finite-dimensional quantum system with an arbitrary number of qubits.  相似文献   

4.
Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing. Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems. This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs. To expedite the search process, a quantum algorithm employing Grover’s search is proposed. However, a challenge arises from ...  相似文献   

5.
Dense coding using superpositions of Bell-states is proposed. The generalized Grover's algorithm is used to prepare the initial entangled states, and the reverse process of the quantum algorithm is used to determine the entangled state in the decoding measurement. Compared with the previous schemes, the superpositions of two Bell-states are exploited. Our scheme is demonstrated using a nuclear magnetic resonance (NMR) quantum computer. The corresponding manipulations are obtained. Experimental results show a good agreement between theory and experiment. We also generalize the scheme to transmit eight messages by introducing an additional two-state system.  相似文献   

6.
秦涛  高克林 《中国物理快报》2003,20(11):1910-1912
We propose a scheme to implement a two-qubit Grover quantum search algorithm. The novelty in the proposal is that the motional state is introduced into the computation and the internal state within a single cold trapped ion.The motional and internal states of the ion are manipulated as two qubits by the laser pulses to accomplish anexample of a Grover algorithm based on the two qubits. The composite laser pulses that are applied to implementthe Grover algorithm have been designed in detail. The issues concerning measurement and decoherence arediscussed.  相似文献   

7.
薛希玲  刘志昊  陈汉武 《中国物理 B》2017,26(1):10301-010301
Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm's performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally.  相似文献   

8.
A quantum algorithm for solving the classical NP-complete problem-the hamilton circuit is presented.The algorithm employs the quantum SAT and the quantum search algorithms.The algorithm is square-root faster than classical algorithm,and becomes exponentially faster than classical algoriothm if nonlinear quantum mechanical computer is used.  相似文献   

9.
We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.  相似文献   

10.
The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a microphone array, each location corresponds to a set of time differences of arrival (TDOAs), and this paper collects them into a TDOA vector. Since the TDOA vectors in the adjacent regions are similar, we present a fast algorithm based on clustering search to reduce the computation complexity of SRP-PHAT. In the training stage, the K-means or Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm is used to find the centroid in each cluster with similar TDOA vectors. In the procedure of sound localization, the optimal cluster is found by comparing the steered response powers (SRPs) of all centroids. The SRPs of all candidate locations in the optimal cluster are compared to localize the sound source. Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computational load of the proposed method with those of the conventional SRP-PHAT algorithm. The results show that the proposed method is able to reduce the computational load drastically and maintains almost the same localization accuracy and robustness as those of the conventional SRP-PHAT algorithm. The difference in localization performance brought by different clustering algorithms used in the training stage is trivial.  相似文献   

11.
庞朝阳  胡本琼 《中国物理 B》2008,17(9):3220-3226
The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (1D QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, 1D and 2D QDFT have time complexity O(v/N) and O(N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.  相似文献   

12.
Fixed-point quantum search   总被引:2,自引:0,他引:2  
The quantum search algorithm consists of an iterative sequence of selective inversions and diffusion type operations, as a result of which it is able to find a state with desired properties (target state) in an unsorted database of size N in only sqrt[N] queries. This is achieved by designing the iterative transformations in a way that each iteration results in a small rotation of the state vector in a two-dimensional Hilbert space that includes the target state; if we choose the right number of iterative steps, we will stop just at the target state. This Letter shows that by replacing the selective inversions by selective phase shifts of pi/3, the algorithm preferentially converges to the target state irrespective of the step size or number of iterations. This feature leads to robust search algorithms and also to new schemes for quantum control and error correction.  相似文献   

13.
The implementation of a quantum computer requires the realization of a large number of N-qubit unitary operations which represent the possible oracles or which are part of the quantum algorithm. Until now there have been no standard ways to uniformly generate whole classes of N-qubit gates. We develop a method to generate arbitrary controlled phase-shift operations with a single network of one-qubit and two-qubit operations. This kind of network can be adapted to various physical implementations of quantum computing and is suitable to realize the Deutsch-Jozsa algorithm as well as Grover's search algorithm.  相似文献   

14.
Quantum computing by nuclear magnetic resonance using pseudopure spin states is bound by the maximal speed of quantum computing algorithms operating on pure states. In contrast to these quantum computing algorithms, a novel algorithm for searching an unsorted database is presented here that operates on truly mixed states in spin Liouville space. It provides an exponential speedup over Grover's quantum search algorithm with the sensitivity scaling exponentially with the number of spins, as for pseudopure state implementations. The minimal decoherence time required is exponentially shorter than that for Grover's algorithm.  相似文献   

15.
Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.  相似文献   

16.
A misunderstanding that an arbitrary phase rotation of the marked state together with the inversion about average operation can be used to construct a (less efficient) quantum search algorithm is cleared. The π rotation of the phase of the marked state is not only the choice for efficiency, but also vital in Grover's quantum search algorithm. The results also show that Grover's quantum search algorithm is robust.  相似文献   

17.
Studies have demonstrated that a joined complete graph is a typical mathematical model that can support a fast quantum search. In this paper, we study the implementation of joined complete graphs in atomic systems and realize a quantum search of runtime $O(\sqrt{N})$ based on this implementation with a success probability of 50%. Even though the practical systems inevitably interact with the surrounding environment, we reveal that a successful quantum search can be realized through delicately engineering the environment itself. We consider that our study will bring about a feasible way to realize quantum information processing including quantum algorithms in reality.  相似文献   

18.
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.  相似文献   

19.
本文讨论了基于量子并行计算和叠加态原理的量子搜索算法,并结合概率论,给出了从无结构的海量数据(库)中搜索相关词汇(组)的方法,并说明该方法远远优越于经典搜索算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号