首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H?S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H?S from aqueous solution by an inert gas (N?) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H?S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in 3?S compared to the liberated H?S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H?S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H?S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Ge?ler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H?S(aq) to the gaseous phase. The assumption of pure physical outgassing of H?S(aq) at low pH values leads to an isotope enrichment factor of -0.9 ± 0.4‰ (n = 14) which is caused by the combined differences in dehydration and diffusion coefficients of H?32S(aq) and H?3?S(aq). In the pH range of natural surface and shallow pore waters, 3?S will be equal to or enriched in the gaseous phase compared to the aqueous solution, therefore creating no or a slight enrichment of 32S in the aqueous solution. Experiments in seawater solution showed no significant influence of increased ionic strength and changed corresponding aqueous speciation on sulphur isotope effects.  相似文献   

2.
The isotope ratios of various sulphur components (total sulphur content in the sediment, sulphate and H(2)S in the pore-water) were measured in a number of cores from recent marine sediments taken from the Kieler Bucht (Kiel Bay) region in the western Baltic Sea. Additionally, the quantitative contents of total sulphur, sulphate, sulphide, chloride, organic carbon, iron and water in the sediment and in the pore-water solutions, respectively, were determined. These investigations provided the following results: 1. The sulphur contained in the sediment (~ 0.3-2% of the dry sample) was for the most part introduced only after sedimentation. This confirms the deliberations of Kaplan et al. [The Distribution and Isotopic Abundance of Sulfur in Recent Marine Sediments off Southern California, Geochim. Cosmochim. Acta 27, 297 (1963)]. The organic substance contributes to the sulphur content of the sediment only to an insignificant degree (in our samples with ~5-10% of the total sulphur). 2. The sulphate in the pore-waters has been identified as a source for sulphur in the sediment. During normal sedimentation, the exchange of sulphate by diffusion significant for changes in the sulphur content goes down to a sediment depth of 4-6 cm. In this process, the sulphate consumed by reduction and formation of sulphide or pyrite is mostly replaced. The uppermost sediment layer thus represents a partially open system for the total sulphur. The diagenesis of the sulphur is allochemical. At depths below 4-6 cm, we are dealing with a closed system. The further diagenesis of sulphur here is isochemical. 3. The isotope values of the sediment sulphur are influenced primarily by sulphur which comes into the sediment by diffusion and which is bound by subsequent bacteriological reduction as either sulphide or pyrite. As a consequence of the prevailing reduction of (32)S and reverse-diffusion of sulphate into the open sea water, a (32)S enrichment takes place in the uppermost layer of the sediment. The δ(34)S values in the sediment range in general between-15 and-35‰, while seawater sulphate is+20‰. No relationship could be established between sedimentological or chemical changes and isotope ratios. In the cores, successive sandy and clayish layers showed no change in the δ(34)S values. However, the sedimentation rate seems to influence δ(34)S values. In one core with relatively low sedimentation rates, the δ(34)S values varied between-29 and-33‰, while cores with higher sedimentation rates showed values between-17 and-24‰. 4. As sediment depth increases, the pore-water sulphate shows, as expected, decreasing concentrations (in a depth of 30-40 cm, we found between 20 and 70% of the seawater values), and increasing δ(34)S values (in one case reaching more than+60‰). The concentration of sulphide in the pore-water increases, however, with sediment depth (to various extents, reaching 80 mg S per litre in one case). The δ(34)S values of the pore-water sulphide in all cores show increases paralleling the sulphate sulphur, with a nearly constant δ difference of 50-60‰ in all cores. This seems to confirm the genetic relationship between the two components.  相似文献   

3.
Stable sulphur isotope fractionation was investigated during reduction of thiosulphate and elemental sulphur at 28°C by growing batch cultures of the sulphur- and thiosulphate-reducing bacteria Dethiosulfovibrio marinus (type strain DSM 12537) and Dethiosulfovibrio russensis (type strain DSM 12538), using citrate as carbon and energy source. The cell-specific thiosulphate reduction rate in the growth phase was 7.4±3.9?fmol?cell(-1)?d(-1). The hydrogen sulphide produced was enriched in (32)S by 10.3±1?‰ compared with total thiosulphate sulphur, close to previous experimental results observed for other sulphate- and non-sulphate-reducing bacteria. Elemental sulphur reduction yields sulphur isotope enrichment factors between-1.3 and-5.2?‰ for D. russensis and-1.7 and-5.1?‰ for D. marinus. The smaller fractionation effects are observed in the exponential growth phase (cellular rates between 5 and 70?fmol?S°?cell(-1)?d(-1)) and enhanced discrimination under conditions of citrate depletion and cell lysis (cellular rates between 0.3 and 3?fmol?S°?cell(-1)?d(-1)).  相似文献   

4.
Our study focuses on pyrite nodules developed in the Brent Group sandstones, which host the Brent Oilfield, one of the North Sea's greatest oil and gas producers. Timing of nodule formation is equivocal, but due to the forceful, penetrative textures that abound, it is considered late. This pyrite offers a research opportunity because it records the development of the supply of H(2)S in a hydrocarbon reservoir and its sulphur isotopic composition. Laser-based analysis of δ(34)S reveals an extraordinary diversity in values and patterns. The values range from-27 to+72‰, covering half the terrestrial range, with large variations at the submillimetre scale. Isotopically heavy (δ(34)S ~+30‰ or higher) sulphide is endemic, but low δ(34)S pyrite is also present and appears to represent a temporally though not spatially (on the ~cm scale) distinct pyritisation event. The distribution of δ(34)S values within individual concretions can be normal (Gaussian), but in some cases may reflect progressive isotope fractionation process(es), conceivably of Rayleigh type. The source of the sulphur and the identity of the isotope fractionation process(es) remain enigmatic.  相似文献   

5.
δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(?) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3)?mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5?‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31?‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00?‰ at an urban site versus-31.00?‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.  相似文献   

6.
A number of springs in Carpathian Mts. contain dissolved H2S and SO4(2-) in concentrations above 10 mg/dm3. In this study we have investigated the sulfur isotope composition (delta34S) of the dissolved sulfur species in the springs from the flysch area in the Carpathian Mts. along the tectonic dislocation. It is believed that some of these springs may carry a major fraction of dissolved sulfur species of extremely deep sulfur (of mantle origin), which is subjected to SO4(2-)-H2S isotope exchange at high temperatures. The original isotopic compositions may be modified by reduction/oxidation at low temperatures and by admixture of sulfur from other sources. In order to distinguish the sulfur of mantle origin we investigated delta34S of dissolved sulfide and sulfate and on the basis of known concentrations we calculated delta34S of total dissolved sulfur. The isotope fractionation between sulfate and sulfide helped to distinguish the sulfur origin. Evaluating the sulfur isotope exchange, we selected 4 springs which likely have only weakly disturbed sulfur of mantle origin.  相似文献   

7.
HX+2(X=Cl,Br)离子的密度函数理论(DFT)研究   总被引:3,自引:3,他引:0       下载免费PDF全文
选取密度泛函方法,采取6-311++G(2df,2pd)基组对单态HCl+2和HBr+2离子进行了理论计算.考虑到HF+2离子中D∞h结构可独立存在的事实,文中首次对HCl+2和HBr+2离子的包含D∞h在内的四种可能几何构型进行了优化计算;求得了Cl2与Br2的质子亲和能及Cl-ClH+与Br-BrH+的键分离能,丰富和完善了对HCl+2的理论计算,并对HBr+2离子存在的可能性进行了计算研究,结果预言HBr+2单态中Cs结构为其平衡结构.最后给出了HCl+2和HBr+2的热化学数据、力常数等数值,并给出了基态HBr+2离子的离解通道,从而给出其完全离解时的离解能,为该离子的分析势能函数的推导准备了必需的理论数据.  相似文献   

8.
The laser-induced fluorescence (LIF) spectrum of the B(3)Pi(0(+))(u)-X(1)Sigma(+)(g) system of Br(2) was recorded by Fourier transform spectroscopy (FTS). The LIF spectra were obtained by using continuous-wave dye laser excitation in the spectral region 16 800-18 000 cm(-1). About 1800 rotationally resolved lines were recorded in 96 fluorescence progressions, originating from the 10 相似文献   

9.
Abstract Stable isotope ((13)C, (18)O, (34)S) and trace element (Sr(2+), Mg(2+), Mn(2+), Ba(2+), Na(+)) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ(13)C = -41 to -47‰ vs. PDB) associated with native sulfur (δ(34)S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ(18)O = -3.9 to -5.9‰ vs. PDB) and a secondary SrSO(4) (δ(18)O = + 20‰ vs. SMOW; δ(34)S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ(34)S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

10.
In this study, we present the experimental results for stable barium (Ba) isotope fractionation (137Ba/134Ba) during the transformation of aragonite (CaCO3) and gypsum (CaSO4·2H2O) in Ba-bearing aqueous solution to witherite (BaCO3) and barite (BaSO4), respectively. The process was studied at three temperatures between 4 and 60?°C. In all cases, the transformation leads to a relative enrichment of the lighter 134Ba isotope in the solid compared to the aqueous solution, with 137/134Ba enrichment factors between –0.11 and ?0.17?‰ for BaCO3, and –0.21 and –0.26?‰ for BaSO4. The corresponding mass-dependent 138/134Ba enrichment factors are ?0.15 to –0.23?‰ for BaCO3, and –0.28 to –0.35?‰ for BaSO4. The magnitude of isotope fractionation is within the range of recent reports for witherite and barite formation, as well as trace Ba incorporation into orthorhombic aragonite, and no substantial impact of temperature can be found between 4 and 80?°C. In previous studies, ion (de)solvation has been suggested to impact both the crystallization process of Ba-bearing solids and associated Ba isotope fractionation. Precipitation experiments of BaSO4 and BaCO3 using an methanol-containing aqueous solution indicate only a minor effect of ion and crystal surface (de)solvation on the overall Ba isotope fractionation process.  相似文献   

11.
Chemisorption and desorption of isolated bromine adatoms on the Si(100)-(2 × 1) surface were investigated with nuclear methods. Br adsorption sites at low coverages of 10−3 monolayers (ML) were characterised by measuring the nuclear quadrupole interaction with perturbed γγ-angular correlation (PAC) of 77Br→77Se probe atoms. Below room temperature, two distinct adsorption sites for Br are revealed by PAC. One of them disappears after isochronal annealing above 300 K. The more stable probe-atom state is associated with single Br atoms saturating a dangling bond of the surface, while the less stable state is attributed to adsorption of Br at a bridge site. The potential barrier between the two adsorption sites is estimated to be 0.9(1) eV. At temperatures above 550 K, the fraction of atoms on distinct sites decreases, presumably due to surface diffusion. By measuring the γ-activity of the sample, complete desorption of the 77Br atoms was observed above 620 K.  相似文献   

12.
HBr and HCl react with Pt(111) and Pt(100) surfaces to form adsorbed layers consisting of specific mixtures of halogen atoms and hydrogen halide molecules. Exposure of Pt(111) to HBr yielded a (3×3) LEED pattern beginning at ΘBr = 29 and persisting at the maximum coverage which consisted of ΘBr = 13 plus ΘHBr = 19. The most probable structure at maximum coverage, Pt(111)[c(3 × 3)]-(3 Br + HBr), nas a rhombic unit cell encompassing nine surface Pt atoms, and containing three Br atoms and one HBr molecule. On Pt(100) the structure at maximum coverage appears to be Pt(100)[c(2√2 × √2)]R45°-(Br + HBr), ΘBr = ΘHBr = 14; the rectangular unit cell involves four Pt atoms, one Br atom and one HBr molecule. Each of these structures consists of an hexagonal array of adsorbed atoms or molecules, excepting slight distortion for best fit with the substrate in the case of Pt(100). Treatment of Pt(100) with HCl produced a diffuse Pt(100)(2 × 2)-(Cl + HCl) structure at the maximum coverage of ΘCl = 0.13, ΘHCl = 0.11. Exposure of Pt(111) to HCl produced a disordered overlayer. Thermal desorption, Auger spectroscopy and mass spectroscopy provided coverage data. Thermal desorption data reveal prominent rate maxima associated with the structural transitions observed by LEED. Br and HBr, Cl and HCl were the predominant thermal desorption products.  相似文献   

13.
In this work, the biogeochemistry of marine sediments from the Kiel Bight, coastal SW Baltic Sea, is studied based on the abundance and isotopic composition of organic carbon and different forms of sedimentary sulphur. Active bacterial sulphate reduction, partly under sulphate-limiting conditions, is evident from paired δ(34)S and δ(18)O values of pore water sulphate. The resulting pore water sulphide is partly precipitated as acid-volatile iron sulphide and subsequently forms sedimentary pyrite, partly serves in later diagenetic sulphurisation of organic matter, or remains dissolved in the pore water, all evident from the respective δ(34)S values. Microbial sulphate turnover is associated with an apparent isotopic fractionation between dissolved sulphate and dissolved sulphide (Δ(34)S) that varies between 46 and 66‰.  相似文献   

14.
In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.  相似文献   

15.
16.
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu2+), copper-limited (0.3 µM Cu2+) or copper-regular (1.1 µM Cu2+) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [1 Feisthauer S, Vogt C, Modrzynski J, Szlenkier M, Krüger M, Siegert M, Richnow HH. Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim Cosmochim Acta. 2011;75:11731184. doi: 10.1016/j.gca.2010.12.006[Crossref], [Web of Science ®] [Google Scholar]] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM?1 h?1 for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM?1 h?1 for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in 13C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.  相似文献   

17.
Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[(E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I2∙−] and [Schiff+, Br2∙−], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats–Redfern and Horowitz–Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.  相似文献   

18.
Energy loss (excitation) spectra of the gaseous monohalobenzenes, C 6H 5X (X = F, Cl, Br and I), were obtained by fast electron impact in the regions of the respective carbon 1 s, chlorine 2 p and 2 s, bromine 3 d and iodine 4 d edges. Gas phase X-ray PES measurements of the binding energies of these levels are also reported. Structure observed below the ionization limits has been interpreted with the aid of term values derived from the two sets of measurements.  相似文献   

19.
δ13C values of gaseous acetaldehyde were measured by gas chromatograph–combustion–isotope ratio mass spectrometer (GC–C–IRMS) via sodium bisulfite (NaHSO3) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO3-coated Sep-Pak® silica gel cartridge, then derivatised with cysteamine, and then the δ13C value of the acetaldehyde–cysteamine derivative was measured by GC–C–IRMS. Using two acetaldehydes with different δ13C values, derivatisation experiments were carried out to cover concentrations between 0.009×10?3 and 1.96×10?3 mg·l?1) of atmospheric acetaldehyde, and then δ13C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ13C values of acetaldehyde, cysteamine and the acetaldehyde–cysteamine derivative. δ13C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ13C values were 0.04–0.31 ‰ for acetaldehyde–cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ13C values of acetaldehyde in ambient air at the two sites were distinct (?34.00 ‰ at an urban site versus?31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.  相似文献   

20.
题目化合物(C22H18O2ClBr)为单斜晶系,空间群为(P21)/n,晶胞参数a=19.502(10)?,b=9.118(5)?,c=11.233(6)?;β=88.18(1)°。结构由MULTAN-80确定。首先在E图上确定了溴原子位置,由加权傅里叶综合定出了其余26个非氢原子坐标。原子坐标按各向同性和各向异性温度因子各修正两轮后,计算差值电子密度图,从差值图上找出了全部氢原子。氢原子坐标按各向同性和非氢原子按各 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号