首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the effect on the density of states in mesoscopic ballistic billiards to which a superconducting lead is attached. The expression for the density of states is derived in the semiclassical S-matrix formalism shedding light onto the origin of the differences between the semiclassical theory and the corresponding result derived from random matrix models. Applications to a square billiard geometry and billiards with boundary roughness are discussed. The saturation of the quasiparticle excitation spectrum is related to the classical dynamics of the billiard. The influence of weak magnetic fields on the proximity effect in rough Andreev billiards is discussed and an analytical formula is derived. The semiclassical theory provides an interpretation for the suppression of the proximity effect in the presence of magnetic fields as a coherence effect of time reversed trajectories. It is shown to be in good agreement with quantum mechanical calculations. Received 21 August 1999 and Received in final form 21 March 2001  相似文献   

2.
We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as scars in eigenfunctions. The semiclassical and classical Ruelle zeta-functions lead to quantum and classical resonances, both of which are observed in microwave experiments on n-disk hyperbolic billiards.  相似文献   

3.
We show that classical chaotic scattering has experimentally measurable consequences for the quantum conductance of semiconductor microstructures. These include the existence of conductance fluctuations-a sensitivity of the conductance to either Fermi energy or magnetic field-and weak-localization-a change in the average conductance upon applying a magnetic field. We develop a semiclassical theory and present numerical results for these two effects in which we model the microstructures by billiards attached to leads. We find that the difference between chaotic and regular classical scattering produces a qualitative difference in the fluctuation spectrum and weak-localization lineshape of chaotic and nonchaotic structures. While the semiclassical theory within the diagonal approximation accounts well for the weak-localization lineshape and for the spectrum of the fluctuations, we uncover a surprising failure of the semiclassical diagonal-approximation theory in describing the magnitude of these quantum transport effects.  相似文献   

4.
Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.  相似文献   

5.
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations—known from quantum chaos—to hold also in classical physics.  相似文献   

6.
A semiclassical expression is derived for the spectral Wigner function of ergodic billiards in terms of a sum over contributions from classical periodic orbits. It represents a generalization of a similar formula by Berry, which does not immediately apply to billiard systems. These results are a natural generalization of Gutzwiller's trace formula for the density of states. Our theory clarifies the origin of scars in the eigenfunctions of billiard systems. However, in its present form, it is unable to predict what states will be dominated by individual periodic orbits. Finally, we compare some of the predictions of our theory with numerical results from the stadium. Within the limitations of numerical resolution, we find agreement between the two.  相似文献   

7.
二维椭圆量子台球中的谱分析   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了二维椭圆台球中的量子谱和经典轨道之间的对应关系.为尝试求解没有解析波函数和本征能量又不能分离变量的体系,采用了定态展开方法(expansion method for stationary states,简称EMSS)得到尽可能精确的数值解,这是闭合轨道理论被推广到计算开轨道的情况.比较了傅里叶变换谱和经典轨道,发现量子谱的峰位置与经典轨道的长度在可分辨的范围内符合得很好,这是半经典理论为经典与量子力学的联系提供桥梁作用的又一个例子. 关键词: 椭圆量子台球 定态展开方法 闭合轨道理论 量子谱  相似文献   

8.
Streamlines and the distributions of nodal points are used as signatures of chaos in coherent electron transport through three types of billiards: Sinai, Bunimovich, and rectangular. Numerical averaged distribution functions of the nearest distances between nodal points are presented. We find the same form for the Sinai and Bunimovich billiards and suggest that there is a universal form that can be used as a signature of quantum chaos for electron transport in open billiards. The universal distribution function is found to be insensitive to the way the averaging is performed (over the positions of the leads, over an energy interval with a few conductance fluctuations, or both). The integrable rectangu-lar billiard, on the other hand, displays a nonuniversal distribution with a central peak related to partial order of nodal points for the case of symmetric attachment of the leads. However, cases with asymmetric leads tend to the universal form. Also, it is shown how nodal points in the rectangular billiard can lead to “channeling of quantum flows,” while disorder in the nodal points in the Sinai billiard gives rise to unstable irregular behavior of the flow. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 6, 398–404 (25 September 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

9.
One of the central paradigms for classical and quantum chaos in conservative systems is the two-dimensional billiard in which particles are confined to a closed region in the plane, undergoing elastic collisions with the walls and free motion in between. We report the first realization of billiards using ultracold atoms bouncing off beams of light. These beams create the desired spatial pattern, forming an "optical billiard." We find excellent agreement between theory and our experimental demonstration of chaotic and stable motion in optical billiards, establishing a new testing ground for classical and quantum chaos.  相似文献   

10.
11.
Compact billiards in phase space, or action billiards, are constructed by truncating the classical Hamiltonian in the action variables. The corresponding quantum mechanical system has a finite Hamiltonian matrix. In previous papers we defined the compact analog of common billiards, i.e., straight motion in phase space followed by specular reflections at the boundaries. Computation of their quantum energy spectra establishes that their properties are exactly those of common billiards: the short-range statistics follow the known universality classes depending on the regular or chaotic nature of the motion, while the long-range fluctuations are determined by the periodic orbits. In this work we show that the eigenfunctions also follow qualitatively the general characteristics of common billiards. In particular, we show that the low-lying levels can be classified according to their nodal lines as usual and that the high excited states present scars of several short periodic orbits. Moreover, since all the eigenstates of action billiards can be computed with great accuracy, Bogomolny's semiclassical formula for the scars can also be tested successfully.  相似文献   

12.
Semiclassical theory based upon complexified classical mechanics is developed for periodically time-dependent scattering systems, which are minimal models of multi-dimensional systems. Semiclassical expression of the wave-matrix is derived, which is represented as the sum of the contributions from classical trajectories, where all the dynamical variables as well as the time are extended to the complex-domain. The semiclassical expression is examined by a periodically perturbed 1D barrier system and an excellent agreement with the fully quantum result is confirmed. In a stronger perturbation regime, the tunneling component of the wave-matrix exhibits a remarkable interference fringes, which is clarified by the semiclassical theory as an interference among multiple complex tunneling trajectories. It turns out that such a peculiar behavior is the manifestation of an intrinsic multi-dimensional effect closely related to a singular movement of singularities possessed by the complex classical trajectories.  相似文献   

13.
《Physics Reports》2002,367(4):249-385
  相似文献   

14.
We show that self-similar magneto-conductance fluctuations observed in semiconductor Sinai billiards originate from quantum interference processes, which are associated with classical trajectories that enclose discrete areas. We identify the exact areal distributions and reproduce the self-similarity with remarkable accuracy.  相似文献   

15.
We examine the density of states of an Andreev billiard and show that any billiard with a finite upper cutoff in the path length distribution P(s) will possess an energy gap on the scale of the Thouless energy. An exact quantum mechanical calculation for different Andreev billiards gives good agreement with the semiclassical predictions when the energy dependent phase shift for Andreev reflections is properly taken into account. Based on this new semiclassical Bohr-Sommerfeld approximation of the density of states, we derive a simple formula for the energy gap. We show that the energy gap, in units of Thouless energy, may exceed the value predicted earlier from random matrix theory for chaotic billiards.  相似文献   

16.
We consider universal shot noise in ballistic chaotic cavities from a semiclassical point of view and show that it is due to action correlations within certain groups of classical trajectories. Using quantum graphs as a model system, we sum these trajectories analytically and find agreement with random-matrix theory. Unlike all action correlations which have been considered before, the correlations relevant for shot noise involve four trajectories and do not depend on the presence of any symmetry.  相似文献   

17.
量子疤痕是波函数在经典不稳定周期轨道周围反常凝聚的一种量子或波动现象.人们对疤痕态的量子化条件进行了大量研究,对深入理解半经典量子化起到了一定的促进作用.之前大部分研究工作主要集中在硬墙量子弹球上,即给定边界形状的无穷深量子势阱系统.本文研究具有光滑复杂势场的二维量子弹球系统,考察疤痕态的量子化条件及其重复出现的规律,得到了与硬墙弹球不一样的结果,对理解这类现象是一个有益的补充.这些结果将有助于理解具有无规长程杂质分布的二维电子系统的态密度谱和输运行为.  相似文献   

18.
Experimental tests of various trace formulas, which in general relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart, for spectra of superconducting microwave billiards of varying chaoticity are reviewed by way of examples. For a two-dimensional Bunimovich stadium billiard the application of Gutzwiller's trace formula is shown to yield correctly locations and strengths of the peaks in the Fourier transformed quantum spectrum in terms of the shortest unstable classical periodic orbits. Furthermore, in two-dimensional billiards of the Limaçon family the transition from regular to chaotic dynamics is studied in terms of a recently derived general trace formula by Ullmo, Grinberg and Tomsovic. Finally, some salient features of wave dynamical chaos in a fully chaotic three-dimensional Sinai microwave billiard are discussed. Here the reconstruction of the spectrum is not as straightforward as in the two-dimensional cases and a modified trace formula as suggested by Balian and Duplantier will have eventually to be applied.  相似文献   

19.
It is demonstrated how the equilibrium semiclassical approach of Coffey et al. can be improved to describe more correctly the evolution. As a result a new semiclassical Klein-Kramers equation for the Wigner function is derived, which remains quantum for a free quantum Brownian particle as well. It is transformed to a semiclassical Smoluchowski equation, which leads to our semiclassical generalization of the classical Einstein law of Brownian motion derived before. A possibility is discussed how to extend these semiclassical equations to nonlinear quantum Fokker-Planck equations based on the Fisher information.  相似文献   

20.
近几年,量子台球问题引起人们的广泛兴趣.以前有很多对二维量子台球做过研究,相对于二维台球来说,三维台球更接近实际体系.本文以三维正方体量子台球为例,利用半经典闭合轨道理论计算了正方体量子台球中的经典开轨道,并研究量子谱函数与经典轨道长度之间的对应关系,发现他们之间对应的很好.这将有助于我们分析开放型量子台球中输运性质问题.利用这种方法物理图像清晰,计算量小并且可以帮助理解一些混沌体系的性质.这是半经典理论为联系量子力学与经典力学起桥梁作用的又一证明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号