首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   

2.
张政  赵金峰  潘永东 《应用声学》2019,38(5):815-823
为了研究直达表面波在圆弧过渡面处传播性能的变化,采用有限元方法模拟了热弹机制下,线性脉冲激光辐照金属铝块表面时激发的表面波在近表面传播过程中,在不同曲率半径的圆弧处发生的反射及透射现象,建立了圆弧半径与反射表面波以及透射表面波时域信号特征之间的联系。计算结果表明:曲率半径与表面波中心波长的数值关系对表面波在圆弧处的传播有显著的影响;同时证明了根据透射表面波信号的到达时间可以反演圆弧半径的大小,为之后利用表面波信号定量检测材料表面圆弧凹痕的深度提供了理论依据。  相似文献   

3.
Perfectly matched layers for modelling seismic oceanography experiments   总被引:2,自引:0,他引:2  
Seismic oceanography techniques are able to provide oceanographic properties of the water masses by processing seismic reflection data. These techniques have reported reflected waves due to the fine structure in the ocean, whose order of magnitude is as weak as −80 dB. Thus, if we focus our attention on numerical simulation of this kind of oceanography experiments, the numerical performance of the method should allow obtaining accurate results, where the spurious reflections from the artificial boundaries of the computational grid are, at least, one order of magnitude smaller than the physical phenomena. This can be achieved by introducing perfectly matched layers (PML), which simulate non-reflecting boundaries. The aim of this work is to propose a numerical underwater propagation method, which combines a second-order finite-difference scheme in the physical region of interest with a first-order pressure/velocity discretization in the PML domain. This numerical method provides a low-cost computational algorithm with an accuracy, which allows recovering the reflected phenomena from the ocean fine structure, and moreover, with a spurious error of order −100 dB from the PML domain.  相似文献   

4.
A time-dependent three-dimensional acoustic scattering problem is considered. An incoming wave packet is scattered by a bounded, simply connected obstacle with locally Lipschitz boundary. The obstacle is assumed to have a constant boundary acoustic impedance. The limit cases of acoustically soft and acoustically hard obstacles are considered. The scattered acoustic field is the solution of an exterior problem for the wave equation. A new numerical method to compute the scattered acoustic field is proposed. This numerical method obtains the time-dependent scattered field as a superposition of time-harmonic acoustic waves and computes the time-harmonic acoustic waves by a new "operator expansion method." That is, the time-harmonic acoustic waves are solutions of an exterior boundary value problem for the Helmholtz equation. The method used to compute the time-harmonic waves improves on the method proposed by Misici, Pacelli, and Zirilli [J. Acoust. Soc. Am. 103, 106-113 (1998)] and is based on a "perturbative series" of the type of the one proposed in the operator expansion method by Milder [J. Acoust. Soc. Am. 89, 529-541 (1991)]. Computationally, the method is highly parallelizable with respect to time and space variables. Some numerical experiments on test problems obtained with a parallel implementation of the numerical method proposed are shown and discussed from the numerical and the physical point of view. The website: http://www.econ.unian.it/recchioni/w1 shows four animations relative to the numerical experiments.  相似文献   

5.
一维非线性声波传播特性   总被引:3,自引:0,他引:3       下载免费PDF全文
张世功  吴先梅  张碧星  安志武 《物理学报》2016,65(10):104301-104301
针对一维非线性声波的传播问题进行了有限元仿真和实验研究. 首先推导了一维非线性声波方程的有限元形式, 含有高阶矩阵的非线性项导致声波具有波形畸变、谐波滋生、基频信号能量向高次谐波传递等非线性特性. 编制有限元程序对一维非线性声波进行了计算并对仿真得到的畸变非线性声波信号进行处理, 分析其传播性质和物理意义. 为验证有限元计算结果, 开展了水中的非线性声波传播的实验研究, 得到了不同输入信号幅度激励下和不同传播距离的畸变非线性声波信号. 然后对基波和二次谐波的传播性质进行详细讨论, 分析了二次谐波幅度与传播距离和输入信号幅度的变化关系及其意义, 拟合出二次谐波幅度随传播距离变化的方程并阐述了拟合方程的物理意义. 结果表明, 数值仿真信号及其频谱均与实验结果有较好的一致性, 证实计算方法和结果的正确性, 并提出了具有一定物理意义的二次谐波随传播距离变化的简单数学关系. 最后还对固体中的非线性声波传播性质进行了初步探讨. 本研究工作可为流体介质中的非线性声传播问题提供理论和实验依据.  相似文献   

6.
The linear wave equation represents the basis of many linear electromagnetic and acoustic propagation problems. Features that a computational model must have, to capture large scale realistic effects (for over the horizon or “OTH” radar communication, for example), include propagation of short waves with scattering and partial absorption by complex topography. For these reasons, it is not feasible to use Green’s Function or any simple integral method, which neglects these intermediate effects and requires a known propagation function between source and observer. In this paper, we describe a new method for propagating such short waves over long distances, including intersecting scattered waves. The new method appears to be much simpler than conventional high frequency schemes: Lagrangian “particle” based approaches, such as “ray tracing” become very complex in 3-D, especially for waves that may be expanding, or even intersecting. The other high frequency scheme in common use, the Eikonal, also has difficulty with intersecting waves.Our approach, based on nonlinear solitary waves concentrated about centroid surfaces of physical wave features, is related to that of Whitham [1], which involves solving wave fronts propagating on characteristics. Then, the evolving electromagnetic (or acoustic) field can be approximated as a collection of propagating co-dimension one surfaces (for example, 2-D surfaces in three dimensions). This approach involves solving propagation equations discretely on an Eulerian grid to approximate the linear wave equation. However, to propagate short waves over long distances, conventional Eulerian numerical methods, which attempt to resolve the structure of each wave, require far too many grid cells and are not feasible on current or foreseeable computers. Instead, we employ an “extended” wave equation that captures the important features of the propagating waves. This method is first formulated at the partial differential equation (PDE) level, as a wave equation with an added “confining” term that involves both a positive and a negative dissipation. Once we have the stable PDE, the discrete formulation is simply a multidimensional PDE with (stable) perturbations caused by the discretization. The resulting discrete solution can then be low order and very simple and yet remain stable over arbitrarily long times. When discretized and solved on an Eulerian grid, this new method allows far coarser grids than required by conventional resolution considerations, while still accounting for the effects of varying atmospheric and topographic features. An important point is that the new method is in the same form as conventional discrete wave equation methods. However, the conventional solution eventually decays, and only the “intermediate asymptotic” solution can be used. Simply by adding an extra term, we show that a nontrivial true asymptotic solution can be obtained. A similar solitary wave based approach has been used successfully in a different problem (involving “Vorticity Confinement”), for a number of years.  相似文献   

7.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

8.
原森  沈中华  陆建  倪晓武 《应用声学》2005,24(6):334-339
本文将激光等效为垂直力源,建立弹性振子点阵模型,并采用数值模拟的方法对线源激光在金属材料中所产生超声及其传播进行了研究,着重针对有无裂痕材料表面上接收到的波形进行了对比和分析。该方法特别适合处理边界问题,因此也易于处理有缺陷材料中的激光超声问题。  相似文献   

9.
In this paper, an explicit acoustical wave propagator (AWP) is introduced to describe the time-domain evolution of acoustical waves. To implement its operation on an initial state of wave motion, the acoustical wave propagator is approximated as a Chebyshev polynomial expansion, which converges to machine accuracy. The spatial gradient in each polynomial term is evaluated by a Fourier transformation scheme. Analysis and numerical examples demonstrated that this Chebyshev-Fourier scheme is highly accurate and computational effective in predicting time-domain acoustical wave propagation and scattering.  相似文献   

10.
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.  相似文献   

11.
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。  相似文献   

12.
王盼盼  周晨  宋杨  张援农  赵正予 《物理学报》2015,64(10):100205-100205
从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.  相似文献   

13.
海面冰层对声波的反射和散射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
刘胜兴  李整林 《物理学报》2017,66(23):234301-234301
北极海面冰层复杂多变,其对声波的反射和散射严重影响冰下水声信道的传输特性,建立海面冰层的声波反射和散射模型对冰下水声通信研究具有重要意义.假设海面冰层为多层固体弹性介质且冰-水界面粗糙,满足微扰边界条件,导出声波从海水介质入射到海面冰层时相干反射系数满足的线性方程组.对相干反射系数随声波频率、掠射角、冰层厚度的变化进行数值分析.进一步引入根据散射声场功率谱密度计算散射系数的方法,改变掠射角,对冰层厚度、散射掠角对散射系数的影响进行研究.  相似文献   

14.
Scattering of a tonal low-frequency (up to 400 Hz) acoustic signal on a rough surface during its propagation along stationary paths in a shallow water area is considered. A calculation technique of estimating the spectral power density of the signal scattered at wind waves (reverberation) given an arbitrary angular distribution of the wind wave is developed based on the Bragg scattering model. The obtained results are compared with the results of numerical simulation of resonant sound scattering at surface perturbations according to an algorithm proposed by the authors, as well as with the results of experimental investigations.  相似文献   

15.
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).  相似文献   

16.
This work deals with the numerical simulation of wave propagation on unbounded domains with localized heterogeneities. To do so, we propose to combine a discretization based on a discontinuous Galerkin method in space and explicit finite differences in time on the regions containing heterogeneities with the retarded potential method to account the unbounded nature of the computational domain. The coupling formula enforces a discrete energy identity ensuring the stability under the usual CFL condition in the interior. Moreover, the scheme allows to use a smaller time step in the interior domain yielding to quasi-optimal discretization parameters for both methods. The aliasing phenomena introduced by the local time stepping are reduced by a post-processing by averaging in time obtaining a stable and second order consistent (in time) coupling algorithm. We compute the numerical rate of convergence of the method for an academic problem. The numerical results show the feasibility of the whole discretization procedure.  相似文献   

17.
The DORT (French acronym for Décomposition de l’Opérateur de Retournement Temporel) method is a novel approach for active detection and focusing of acoustic waves on the targets in the scattering medium. This technique involves the determination of the invariant of the time-reversal operator obtained by measurement of the scattering data in a pulse-echo mode. In this paper, a proposed approach based on the DORT method is developed to solve the acoustic inverse scattering problem of a small metallic scatterer. The proposed approach not only estimates the position of the scatterer, but also determines the physical properties of an unknown metallic scatterer such as the shape (cylinder or sphere), the material (density), and the size (radius) in an anisotropic scattering case. Theoretical and numerical simulation results are also studied and investigated to show that the proposed approach can simultaneously characterize all those properties of an unknown metallic scatterer. Moreover, the advantage of the proposed approach is to avoid the complex iterative scheme in solving the direct scattering problem and results in smaller computational load and faster implementation.  相似文献   

18.
Li J  Rose JL 《Ultrasonics》2006,44(1):35-45
The propagation of non-axisymmetric guided waves in larger diameter pipes is studied in this paper by treating the guided waves as corresponding Lamb waves in an unwrapped plate. This approximation leads to a simpler method for calculating the phase velocities of hollow cylinder guided waves, which reveals a beam focusing nature of non-axisymmetric guided waves generated by a partial source loading. The acoustic fields in a pipe generated by a partial-loading source includes axisymmetric longitudinal modes as well as non-axisymmetric flexural modes. The circumferential distribution of the total acoustic field, also referred as an angular profile, diverges circumferentially while guided waves propagate with dependence on such factors as mode, frequency, cylinder size, propagation distance, etc. Exact prediction of the angular profile of the total field can only be realized by numerical calculations. In particular cases, however, when the wall thickness is far less than the cylinder diameter and the wavelength is smaller than or comparable to the pipe wall thickness, the acoustic field can be analyzed based on the characteristics of Lamb waves that travel along a periodic unwrapped plate. Based on this assumption, a simplified model is derived to calculate the phase velocities of non-axisymmetric flexural mode guided waves. The model is then applied to discussions on some particular characteristics of guided-wave angular profiles generated by a source loading. Some features of flexural modes, such as cutoff frequency values are predicted with the simpler model. The relationship between the angular profiles and other factors such as frequency, propagation distance, and cylinder size is obtained and presented in simple equations. The angular profile rate of change with respect to propagation distance is investigated. In particular, our simplified model for non-axisymmetric guided waves predicts that the wave beam will converge to its original circumferential shape after the wave propagates for a certain distance. A concept of "natural focal point" is introduced and a simple equation is derived to compute the 1st natural focal distance of non-axisymmetric guided waves. The applicable range of the simplified equation is provided. Industrial pipes meet the requirement of wall thickness being far less than the pipe diameter. The approximate analytical algorithms presented in this paper provides a convenient method enabling quick acoustic field analysis on large-diameter industrial pipes for NDE applications.  相似文献   

19.
A numerical method of solving the problem of acoustic wave radiation in the presence of a rigid scatterer is described. It combines the finite element method and the boundary algebraic equation one. In the proposed method, the exterior domain around the scatterer is discretized, so that there appear an infinite domain with regular discretization and a relatively small layer with irregular mesh. For the infinite regular mesh, the boundary algebraic equation method is used with spurious resonance suppression according to Burton and Miller. In the thin layer with irregular mesh, the finite element method is used. The proposed method is characterized by simple implementation, fair accuracy, and absence of spurious resonances.  相似文献   

20.
沙莎  陈志华  张焕好  姜孝海 《物理学报》2012,61(6):64702-064702
激波绕过三角楔(Schardin问题)时会产生激波马赫反射与绕射、 三角楔尾涡与涡串等复杂物理现象. 本文利用三阶精度加权基本无振荡(WENO)格式、 结构化矩形网格的自适应加密方法与沉浸边界法对Schardin问题进行了数值模拟. 数值结果清晰地显示了激波与三角楔相互作用, 在楔面发生马赫反射以及在楔角绕射诱导主涡的过程, 并与Schardin等的实验结果及相关数值结果完全符合. 另外, 数值结果还详细反映了先前实验与数值结果没有详细讨论的主涡滑移层上的涡串生成机理, 以及激波与涡串相互作用和产生声波的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号