首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电动调制气流声源输出功率大,频谱容易控制,是较为理想的强声源.我们研制成功的两千和一万声瓦电动调制气流声源(以下简称2kw和10kw),最大功率区在100—1250Hz(±4dB)之间;10千声瓦声源在28m~3的混响室中能形成158.5dB的混响场,2千声瓦声源在直径140mm的行波管中能产生171.5dB的行波场.它们还可以重播音乐、语言讯号,若干个组阵广播距离达12km以上.文献[1—3]报道过这类声源的设计原理和实验工作,本文结合我  相似文献   

2.
文章给出了水声波导模型下垂直阵和单水听器测量水下目标辐射噪声的误差和修正方法,以便使两种测量结果一致和统一。在设定典型水声波导的参数后,用波数积分方法计算出声源到垂直阵各阵元的信道传输函数,再推导出垂直嵌套阵聚焦波束的信道传输函数,从而得到单水听器和垂直嵌套阵的测量误差。数值计算表明在70 m海深条件下,不同深度单水听器测量单频信号频谱级起伏达15 dB以上,总声级测量误差的均值为3 dB,而垂直嵌套阵测量单频信号频谱级起伏仅4 dB,总声级测量误差的均值趋于0 dB。海上实验测量单频信号声源级的结果与数值计算的起伏一致,海试中垂直阵获得较高的空间增益。结论是在浅海条件下垂直阵的测量精度高于单水听器的测量精度,用单水听器测量的目标总声级需要修正时可以修正,而用单水听器测量的单频信号声源级则难以修正。  相似文献   

3.
针对非消声水池的声学测量应用,提出了一种在界面起伏的非消声水池中测量水下声源辐射声功率的方法。基于数值方法分析了在非消声水池中利用起伏界面改善低频声源辐射声功率测量的可行性,进一步在一个尺寸为1.2 m×1.0 m×0.8 m的非消声水池中开展实验研究,测量了水声换能器的辐射声功率。实验表明,相对于界面静止的水池,利用造波装置生成随机起伏界面后,声场扩散性明显改善:(1)水池的Schroeder频率从10015 Hz降低到8370 Hz,辐射声功率的测量范围向低频扩展;(2)结合空间平均技术测得的频响曲线起伏程度减小,与自由场值更接近,辐射声功率的测量结果更为准确。所提方法有助于提高非消声水池中水下目标声学特性的测量能力。  相似文献   

4.
一种任意入射角反射系数反演技术   总被引:1,自引:0,他引:1  
利用声场空间变换技术反演声学材料或声反射面在任意入射角时的反射系数,需要测量靠近反射面上方两平行面上复声压。本文提出利用声强与声压幅值测量来获取复声压的相位,进而实现反射系数反演。研究表明用点声源时因有限测量尺寸而产生的误差大小可以通过采用偶极子源来减小。数值模拟结果与误差分析结果均表明了这种反演任意入射角反射系数技术的有效性。  相似文献   

5.
声场的空间相关特性是声场的重要特征,对水下探测、水声通讯等各种设备在实际海洋环境中应用的参数选择具有重要意义,是水声工程技术研究的重要基础之一。相比于水中声源激发声场的相关特性研究,空气中声源的相关研究很少。本文推导了空气中声源激发水下声场的水平纵向相关的简正波表达式,并通过数值仿真分析,比较了声源分别位于空气中和水中时水下声场的水平纵向相关特性。对南海海域进行的一次悬挂汽笛空气声源、海底水平阵接收信号海上实验获得的数据进行分析,结果表明:空气中声源位于不同距离时,其发射的声信号激发水下声场的水平纵向相关均存在明显的起伏结构,基于本文提出的空气中声源激发水下声场的水平纵向相关系数的简正波表达式能够较好地解释该现象.   相似文献   

6.
利用2020年6月海南岛沿岸试验数据,分析内波及声能量起伏特征。试验海域以全日潮内波为主,并伴随有高频内波活动。内波活动引起360 Hz单频信号20 km定点声起伏峰峰值超过30 dB, 320~400 Hz线性调频信号起伏峰峰值超过15 dB。利用测量数据结合数值仿真,讨论了内波引起单频信号和线性调频信号呈现不同起伏特征的原因。结果表明:试验海域内波活动导致单频声场模态间干涉条纹出现移动,进而导致接收位置处特定频率的声能量出现大幅度的快速起伏;由于带宽内的平均作用,宽带信号的能量起伏远小于单频信号的能量起伏。当内波传播速度变化时,各内波成分在声传播路径上出现的时间和位置发生了变化,使得声场出现剧烈起伏的时间也随之变化。  相似文献   

7.
水声材料低频声性能的行波管测量   总被引:3,自引:0,他引:3  
发展了一种测量水声材料声学性能的行波管测量技术,能够在实验室充水管中模拟海洋水温水压环境,对样品的声学参数实施低频范围的测量。被测样品置于声管中央,声管两端配置一对发射器。应用主动消声技术使样品的透射声波在声管次发射器表面的反射可忽略,在管中建立起行波声场。然后,通过分别计算样品两边声场中每一对水听器的传递函数,得到样品的反射系数和透射系数。测量系统声管的内径为Φ208 mm,工作频率范围为100~4000 Hz,最高静水压为5 MPa。对水层和层状不锈钢样品的反射系数和透射系数进行了实际测量和理论计算,结果表明,测量值和计算值有较好的吻合,测量不确定度不大于1.5 dB。  相似文献   

8.
岳舒  侯宏  王谦 《声学学报》2020,45(2):169-175
为了解决波束形成声源识别过程中声源辐射声功率定量计算的问题,给出了阵型简洁、便于组合的线阵声强缩放模型。通过推导线阵的声强缩放系数,建立起线阵波束输出结果与声源辐射声功率之间的换算关系。无论是线阵还是平面阵的声强缩放方法,对于偏离阵列中心位置较远处的声源进行辐射声功率估算时都存在较为明显的误差。通过理论推导和仿真模拟计算,研究了同一单极子点声源在不同位置处的声功率估算偏差随频率、幅度的变化规律,发现该估算偏差只与声源偏离位置有关,而与声源自身的强度信息无关的结论,据此给出了相应的声功率估算修正方法。半消声室实验结果和声压法测量结果对比表明:修正后的线阵声强缩放方法用于中高频声源的辐射声功率计算时,单频声源的估算误差不超过1.0 dB,宽带声源的估算误差不超过1.8 dB。   相似文献   

9.
基于波束形成缩放声强的声源局部声功率计算   总被引:1,自引:0,他引:1  
褚志刚  杨洋 《声学学报》2013,38(3):265-271
基于波束形成法识别噪声源时,为计算主要噪声源的辐射声功率,给出了基于平面波模型的声强缩放方法,模拟计算了单极子点声源局部声功率的计算误差,结果显示:当阵列平面与声源计算平面间距离等于阵列直径时,基于波束形成缩放声强计算的声功率误差仅略高于0.1 dB。为克服旁瓣干扰,给出了具有一定动态范围的声源计算平面积分法,模拟计算了单极子点声源的局部声功率,结果表明:该积分法的计算值与主瓣区域积分法的计算值近似相等,均约等于理论声功率。进一步,波束形成法与声强法的对比算例试验验证了基于波束形成缩放声强计算声源局部声功率方法的有效性。   相似文献   

10.
刘皓  雷成友  丁茫  李晓东 《应用声学》2014,33(2):177-183
变压器两侧常建有高大的防火墙,其从声学角度可视为刚性反射壁面,会改变变压器的辐射声场,进而影响变压器声功率测量结果。本文利用有限元、边界元等数值计算方法建立了变压器声辐射的仿真模型用以分析反射壁面对变压器声功率测量结果的影响,并通过实际测量验证了仿真计算所得结论。结果表明,反射壁面对变压器声功率测量结果的影响程度随反射壁面到变压器箱体距离增加而减弱,且当反射壁面距变压器箱体5 m以上时,其对变压器声功率基频及各谐波成份测量结果的影响均在2 dB以内。另外反射壁面对变压器噪声高频成份声功率测量结果的影响较大,而对100 Hz、200 Hz等低频成份测量结果影响较小,基本低于3 dB。  相似文献   

11.
岳舒  侯宏  于佳雨  王谦 《声学学报》2021,46(2):246-254
为了解决水下声源辐射声功率难以计算的问题,利用线阵声强缩放方法在波束形成声源识别的基础上,根据波束输出结果与声源辐射声功率之间的换算关系来获得相应的声功率。为了提高线阵声强缩放方法的水下声功率估算精度,给出了一定动态范围限制的主瓣区域积分方法,并通过仿真验证了该方法的有效性。在消声水池中开展了水下声功率估算的实验研究。在不同的测试距离下,对双声源条件下的单频以及宽带声源在阵列侧的辐射声功率进行了估算,以混响法的测量结果为参考值,研究了估算误差随声源频率、测试距离等影响因素的变化规律。实验结果表明,无论是单频还是宽带声源,声功率的最大估算误差不超过2.6 dB,在高频时不超过1.6 dB。验证了线阵声强缩放方法应用于水下声源辐射声功率估算的正确性与可行性。   相似文献   

12.
本文讨论了混响室内的声强分布,指出混响室内声强分布与自由场一样,对点声源服从平方反比律。对混响室及消声室的声压及声强随时间的起伏作了初步摸索,得到了几条实验规律,指出声强起伏比声压起伏更大。采用声强测量方法对同—声源在消声室及混响室内的声功率输出作了测量,说明声源的声功率输出是随环境变化的声学量,在混响室内声源的低频发射要比消声室内的发射要低。  相似文献   

13.
非自由声场中目标声场还原与重建的等效源方法   总被引:1,自引:0,他引:1       下载免费PDF全文
胡定玉  李再帏  方宇 《声学学报》2017,42(4):465-475
为消除在非自由声场中重建声场时干扰声源对重建效果的影响,提出一种采用单个测量面上的声压和质点振速作为输入、等效源法作为分离和重建算法的非自由声场中目标声场还原与重建方法。该方法首先利用单面声压-质点振速测量和基于等效源法的声场分离技术将测量的混合声场分离为来自目标声源的向外传播的声场和来自干扰声源的向内传播的声场,然后利用向内传播的声场和目标声源的边界条件计算出干扰声在目标声源表面产生的散射声场,并将其从向外传播的声场中去除,还原出目标声源在自由声场条件下的辐射声场,最后利用还原的声场实现目标声场重建。通过数值仿真和实验检验了该方法的有效性和必要性。仿真和实验的结果表明,该方法可以在非自由声场的测量条件下,有效地去除干扰声的影响,实现目标声场的准确重建。   相似文献   

14.
超声吸收体的物理参数对利用水听器和红外热成像技术的高强度聚焦超声(High-Intensity Focused Ultrasound,HIFU)声场测量结果具有重要影响。为了探索超声吸收体的物理参数(密度、声速、衰减系数、热扩散系数、定压比热容)对测量结果的影响规律,本文根据层状模型计算出相同声源功率输出时不同物理参数对应的超声吸收体内部声场和热场,利用有限差分法计算出超声吸收体表面在辐照过程中的温度变化;利用基于水听器和红外热成像技术的聚焦声场测量方法测量出焦域内不同位置上声场特征值(轴线声强和-6 dB声束宽度),与通过理论计算得到的声源在纯水中声场特征值进行比较,分析了不同物理参数对测量结果的影响。超声吸收体的声、热学参数中除了声速外,其它物理参数的变化引起声场特征值的测量造成最大相对差异率小于15%。因为声波传播速度的改变会导致超声吸收体内部热场分布变化,使测量结果与理论计算值有较大偏差,其中-6 dB声束宽度和轴线声强最大相对差异率为95.37%和69.97%。因此在选择超声吸收体的声、热学参数时应重点关注声波在吸收体内声速的影响。超声吸收体的声学参数与水的声学参数相近时,可以在焦域内获得较好的测量结果。   相似文献   

15.
基于虚拟时间反转镜的垂直阵舰船辐射噪声级测量方法   总被引:2,自引:0,他引:2  
研究了利用垂直阵测量舰船辐射噪声过程中因水声信道的多径效应对测量性能产生的影响,建立了基于声场模型的舰船辐射噪声测量的数学模型,推导了基于虚拟时间反转镜辐射噪声测量的理论公式,提出了一种基于虚拟时间反转镜技术的垂直阵舰船辐射噪声级测量方法。该方法首先采用基于波束积分的SCOOTER模型,根据海洋环境参数计算出辐射声源至测量水听器之间的信道传输函数,然后,用计算出的信道传输函数对接收信号做虚拟时反处理,以消除或减弱信道多径效应对接收信号的影响,从而提高舰船辐射噪声级测量精度。针对典型的浅海声信道,进行了计算机仿真试验。结果表明,该方法能有效地进行舰船宽带辐射噪声测量,当阵元个数满足一定要求时,测量得到的声源级与实际声源级相比,误差小于1 dB。   相似文献   

16.
提出了一种联合扩散场(DAF)激励与近场声全息(NAH)辐射声强重建的建筑构件空气声隔声测量方法。该方法首先通过DAF激励构件振动并获取入射声功率,然后利用NAH技术从辐射声压场中重建构件表面高空间分辨率的法向声强分布,最后根据声强分布来计算辐射声功率和定位辐射热区,从而实现构件隔声量和隔声缺陷测量。隔声室实验研究表明,在测试距离和采样间距均为0.04 m的条件下,该方法测量的隔声量与声压法的误差在100~5000 Hz频带小于3.3 dB,在250~3150 Hz频带小于1.3 dB,对圆孔(直径8 mm)和矩形缝(长80 mm、宽3 mm)的定位精度高达厘米级;同时,该方法在一定混响和背景噪声影响下的稳定性较强,接收室混响时间从1.0 s增至3.4 s (步长0.6 s)以及信噪比从10 dB降至0 dB (步长5 dB),隔声量测量误差分别在0.8 dB和0.3 dB以内,缺陷定位误差在0.037 m和0.035 m以内。所提方法有助于提高实验室中建筑构件隔声特性的测量能力,同时对接收室测试环境具有较强的鲁棒性。  相似文献   

17.
提出了一种利用矢量水听器在声管中实现一体化有源吸声终端的方法。该吸声终端采用矢量水听器作为传感元件,以实现入射波和反射波的分离,克服了传统双水听器声波分离方法中传感器间距及测量频率的限制,显著拓宽了一体化有源吸声终端的低频吸声频段。由声管中水声材料的测试原理出发,重点分析了吸声终端中传感元件灵敏度误差对吸声终端性能的影响,并给出了反射、透射系数的修正方法。实验结果表明:该有源吸声终端在100~2000 Hz频段内吸声系数可以达到0.98以上,测量得到材料的声压反射系数、声压透射系数及理论计算基本一致。   相似文献   

18.
在大学物理实验中,关于声的实验较少,比较常见的实验是利用超声波的波动特性来测量声速,而对次声声源以及声场分布情况的研究少见.我们设计的"分立推挽气流激励式"次声发生器可作次声声源及相关声场测量的实验,能让学生了解次声波的特点、调制式气流次声发生器的换能机理和基本的声场测量方法.使用MATLAB对所测数据进行分析和处理,运用COMSOL对声场进行数值仿真,能让学生了解声场的分布和声源的指向性.从而拓宽学生的知识面、提高学生的实验能力以及数据处理和分析能力.  相似文献   

19.
为解决非自由声场中近场声全息重建时,干扰声在目标声源表面产生的散射影响,提出一种基于球面波叠加法的自由场还原技术。该技术首先采用基于球面波叠加法的声场分离技术获得向内和向外传播的声场,然后以目标声源的表面导纳作为边界条件,实现目标声源辐射声和散射声的分离,从而获得等效于自由声场的测量条件。该技术为准确实现非自由声场中的噪声源识别创造了条件。文中首先详细描述了该技术的基本原理,并提出一种最优球面波展开项数选取方法,最后通过数值仿真说明了该技术的有效性。结果表明:在频率较低时,散射声影响较小,采用声场分离技术和自由场还原技术效果相当;但随着频率升高,散射声影响逐步增强,必须采用自由场还原技术才能准确获得目标声源辐射声。   相似文献   

20.
在本文中推出了混响室内一个简单声源的功率发射的准确公式,并用简单分析方法求得声功率发射的重要特性。其一就是声源在混响室内的平均功率并不等于其在自由声场中的功率,而是大于后者,这是前人所未料及的。还进一步推出一平滑的统计公式,后者一直可用于波长接近于室内平均自由程的低频率。由这公式可看到室中有很多功率发射峰值的点,在室内形成规则的立体网格,接近周围墙壁则为高发射区。统计公式在预测声功率发射沿与混响室某长、宽、高方向的相对变化时,基本是准确的,只有平滑时引起的误差,用于室内声场的一般估计时可能有较多误差。为说明问题,文中举了几个数字实例以比较简正波理论和统计理论的结果。混响室内声功率发射的变化影响声源的使用和测量,必须予以注意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号